The same was done by M. Dessprèz. Then each seed was planted separately, eight inches apart in a row, by means of a specially devised tool, similar to the rayonneur which is used for planting potatoes; and the rows, also eight inches apart, were alternately given to the big and to the smaller seeds. One-fourth part of an acre having been planted in this way, with seeds obtained from both early and late ears, crops corresponding to 83·8 bushels per acre for the first series, and 90·4 bushels for the second series, were obtained; even the small grains gave in this experiment as much as 70·2 and 62 bushels respectively.[93]
The crop was thus more than doubled by the choice of seeds and by planting them separately eight inches apart. It corresponded in Dessprèz’s experiments to 600 grains obtained on the average from each grain sown; and one-tenth or one-eleventh part of an acre was sufficient in such case to grow the eight and a half bushels of wheat which are required on the average for the annual bread food per head of a population which would chiefly live on bread.
Prof. Grandeau, Director of the French Station Agronomique de l’Est, has also made, since 1886, experiments on Major Hallett’s method, and he obtained similar results. “In a proper soil,” he wrote, “one single grain of wheat can give as much as fifty stems (and ears), and even more, and thus cover a circle thirteen inches in diameter.”[94] But as he seems to know how difficult it often is to convince people of the plainest facts, he published the photographs of separate wheat plants grown in different soils, differently manured, including pure river sand enriched by manure.[95] He concluded that under proper treatment 2,000 and even 4,000 grains could be easily obtained from each planted grain. The seedlings, growing from grains planted ten inches apart, cover the whole space, and the experimental plot takes the aspect of an excellent cornfield, as may be seen from a photograph given by Grandeau in his Etudes agronomiques.[96]
Fig. 4.—Wheat Plants. a, Has given 17 ears from each planted grain. Soil manured with chemical manure only. b, Has given 25 ears from each planted grain. Soil manured with both stable and chemical manure.
Fig. 5.—Squares at Professor Grandeau’s experimental station, planted with grains of wheat, in three different soils: a, pure sand; b and c, manured arable soil; each grain 12 inches apart.
In fact, the eight and a half bushels required for one man’s annual food were actually grown at the Tomblaine station on a surface of 2,250 square feet, or forty-seven feet square—that is, on very nearly one-twentieth part of an acre.
Again, we may thus say, that where we require now three acres, one acre would be sufficient for growing the same amount of food, if planting wide apart were resorted to. And there is, surely, no more objection to planting wheat than there is to sowing in rows, which is now in general use, although at the time when the system was first introduced, in lieu of the formerly usual mode of sowing broadcast, it certainly was met with great distrust. While the Chinese and the Japanese used for centuries to sow wheat in rows, by means of a bamboo tube adapted to the plough, European writers objected, of course, to this method under the pretext that it would require too much labour. It is the same now with planting each seed apart. Professional writers sneer at it, although all the rice that is grown in Japan is planted and even replanted. Everyone, however, who will think of the labour which must be spent for ploughing, harrowing, fencing, and keeping free of weeds three acres instead of one, and who will calculate the corresponding expenditure in manure, will surely admit that all advantages are in favour of the one acre as against the three acres, to say nothing of the possibilities of irrigation, or of the planting machine-tool, which will be devised as soon as there is a demand for it.[97]
More than that, there is full reason to believe that even this method is liable to further improvement by means of replanting. Cereals in such cases would be treated as vegetables are treated in horticulture. Such is, at least, the idea which began to germinate since the methods of cereal culture that are resorted to in China and Japan became better known in Europe. (See [Appendix O].)