For many years past astronomy has been needing a careful revision of the Kant and Laplace’s hypothesis; but no theory is yet forthcoming which would compel general acceptance. Geology surely has made wonderful progress in the reconstitution of the palæontological record, but dynamical geology progresses at a despairingly slow rate; while all future progress in the great question as to the laws of distribution of living organisms on the surface of the earth is hampered by the want of knowledge as to the extension of glaciation during the Quaternary epoch.[194]

In short, in each branch of science a revision of the current theories as well as new wide generalisations are wanted. And if the revision requires some of that inspiration of genius which moved Galileo and Newton, and which depends in its appearance upon general causes of human development, it requires also an increase in the number of scientific workers. When facts contradictory to current theories become numerous, the theories must be revised (we saw it in Darwin’s case), and thousands of simple intelligent workers in science are required to accumulate the necessary facts.

Immense regions of the earth still remain unexplored; the study of the geographical distribution of animals and plants meets with stumbling-blocks at every step. Travellers cross continents, and do not know even how to determine the latitude nor how to manage a barometer. Physiology, both of plants and animals, psycho-physiology, and the psychological faculties of man and animals are so many branches of knowledge requiring more data of the simplest description. History remains a fable convenue chiefly because it wants fresh ideas, but also because it wants scientifically thinking workers to reconstitute the life of past centuries in the same way as Thorold Rogers or Augustin Thierry have done it for separate epochs.

In short, there is not one single science which does not suffer in its development from a want of men and women endowed with a philosophical conception of the universe, ready to apply their forces of investigation in a given field, however limited, and having leisure for devoting themselves to scientific pursuits. In a community such as we suppose, thousands of workers would be ready to answer any appeal for exploration. Darwin spent almost thirty years in gathering and analysing facts for the elaboration of the theory of the origin of species. Had he lived in such a society as we suppose, he simply would have made an appeal to volunteers for facts and partial exploration, and thousands of explorers would have answered his appeal. Scores of societies would have come to life to debate and to solve each of the partial problems involved in the theory, and in ten years the theory would have been verified; all those factors of evolution which only now begin to receive due attention would have appeared in their full light. The rate of scientific progress would have been tenfold; and if the individual would not have the same claims on posterity’s gratitude as he has now, the unknown mass would have done the work with more speed and with more prospect for ulterior advance than the individual could do in his lifetime. Mr. Murray’s dictionary is an illustration of that kind of work—the work of the future.

However, there is another feature of modern science which speaks more strongly yet in favour of the change we advocate. While industry, especially by the end of the last century and during the first part of the present, has been inventing on such a scale as to revolutionise the very face of the earth, science has been losing its inventive powers. Men of science invent no more, or very little. Is it not striking, indeed, that the steam-engine, even in its leading principles, the railway-engine, the steam-boat, the telephone, the phonograph, the weaving-machine, the lace-machine, the lighthouse, the macadamised road, photography in black and in colours, and thousands of less important things, have not been invented by professional men of science, although none of them would have refused to associate his name with any of the above-named inventions? Men who hardly had received any education at school, who had merely picked up the crumbs of knowledge from the tables of the rich, and who made their experiments with the most primitive means—the attorney’s clerk Smeaton, the instrument-maker Watt, the brakesman Stephenson, the jeweller’s apprentice Fulton, the millwright Rennie, the mason Telford, and hundreds of others whose very names remain unknown, were, as Mr. Smiles justly says, “the real makers of modern civilisation”; while the professional men of science, provided with all means for acquiring knowledge and experimenting, have invented little in the formidable array of implements, machines, and prime-motors which has shown to humanity how to utilise and to manage the forces of nature.[195] The fact is striking, but its explanation is very simple: those men—the Watts and the Stephensons—knew something which the savants do not know—they knew the use of their hands; their surroundings stimulated their inventive powers; they knew machines, their leading principles, and their work; they had breathed the atmosphere of the workshop and the building-yard.

We know how men of science will meet the reproach. They will say: “We discover the laws of nature, let others apply them; it is a simple division of labour.” But such a rejoinder would be utterly untrue. The march of progress is quite the reverse, because in a hundred cases against one the mechanical invention comes before the discovery of the scientific law. It was not the dynamical theory of heat which came before the steam-engine—it followed it.

When thousands of engines already were transforming heat into motion under the eyes of hundreds of professors, and when they had done so for half a century, or more; when thousands of trains, stopped by powerful brakes, were disengaging heat and spreading sheaves of sparks on the rails at their approach to the stations; when all over the civilised world heavy hammers and perforators were rendering burning hot the masses of iron they were hammering and perforating—then, and then only, Séguin, senior, in France, and a doctor, Mayer, in Germany, ventured to bring out the mechanical theory of heat with all its consequences: and yet the men of science ignored the work of Séguin and almost drove Mayer to madness by obstinately clinging to their mysterious caloric fluid. Worse than that, they described Joule’s first determination of the mechanical equivalent of heat as “unscientific.”

When thousands of engines had been illustrating for some time the impossibility of utilising all the heat disengaged by a given amount of burnt fuel, then came the second law of Clausius. When all over the world industry already was transforming motion into heat, sound, light, and electricity, and each one into each other, then only came Grove’s theory of the “correlation of physical forces”; and Grove’s work had the same fate before the Royal Society as Joule’s. The publication of his memoir was refused till the year 1856.

It was not the theory of electricity which gave us the telegraph. When the telegraph was invented, all we knew about electricity was but a few facts more or less badly arranged in our books; the theory of electricity is not ready yet; it still waits for its Newton, notwithstanding the brilliant attempts of late years. Even the empirical knowledge of the laws of electrical currents was in its infancy when a few bold men laid a cable at the bottom of the Atlantic Ocean, despite the warnings of the authorised men of science.

The name of “applied science” is quite misleading, because, in the great majority of cases, invention, far from being an application of science, on the contrary creates a new branch of science. The American bridges were no application of the theory of elasticity; they came before the theory, and all we can say in favour of science is, that in this special branch, theory and practice developed in a parallel way, helping one another. It was not the theory of the explosives which led to the discovery of gunpowder; gunpowder was in use for centuries before the action of the gases in a gun was submitted to scientific analysis. And so on. One could easily multiply the illustrations by quoting the great processes of metallurgy; the alloys and the properties they acquire from the addition of very small amounts of some metals or metalloids; the recent revival of electric lighting; nay, even the weather forecasts which truly deserved the reproach of being “unscientific” when they were started for the first time by that excellent observer of shooting stars, Mathieu de la Drôme, and by an old Jack tar, Fitzroy—all these could be mentioned as instances in point.