In this respect it is interesting that 1051 moved right out of his area and traveled into country that presumably was unknown to him. Wolves 1053 and 1055 each ventured into an area that was almost devoid of deer and that even had few moose in it. Without sufficient fat reserves in all these animals, it would seem disadvantageous for them to have made these travels.

Evidently wolves can obtain enough food in much smaller areas than these three animals used after February. Both 1059's pack of five and 1057 lived in relatively small areas throughout the winter and seemed to survive well. Before late February, 1051, 1053, and 1055 did also. Thus some factor other than food must have influenced the movements of these three animals from late February through April.

The fact that the increased movement began during the breeding season makes one suspect a relationship between the two. One possibility is that the factors increasing the hormonal flow associated with breeding in adults stimulate a hormone output in immature or subordinate individuals that causes an increase in their movements. An alternative is that the breeding behavior of resident packs involves the beginning of, or an increase in, aggression toward neighboring nonmembers. This might force the lone animals to shift about over large areas in avoidance of such aggression.

Whatever the cause of the changes in movements of these animals, the fact that the pack used a much smaller area than any of the lone wolves may be of central importance in trying to understand the organization of the wolf population. The following pieces of information are also pertinent to such an understanding: (1) the pack, which can be presumed to include a breeding pair (Mech 1970), chased other wolves in its area; (2) the lone wolves, which apparently did not breed, were tolerant of, or indifferent to, other lone wolves in their areas; (3) the ranges of the lone wolves overlapped considerably ([fig. 35]); (4) the lone wolves seemed to avoid certain large areas that one might logically think would have been visited by them ([fig. 35]); and (5) packs of wolves were sometimes observed in these large areas ([fig. 35]).

From the above information it can be hypothesized that the wolf population consists basically of groups of breeding packs defending territories of limited size, with lone wolves and other nonbreeding population units that are tolerant of each other shifting about in much larger nonexclusive areas among these territories. The information from Isle Royale (Mech 1966a, Jordan et al. 1967) is consistent with this idea, but the area of that island (210 square miles) is too small to allow untested extrapolations to be made about spacing in much larger wolf populations. Data from Algonquin Park, Ontario (Pimlott et al. 1969) also strongly suggest this hypothesis. However, the packs studied there could not be identified with certainty, and little information was obtained about nonbreeding population units.

To test the proposed hypothesis with certainty, a larger number of identifiable breeding and nonbreeding population units from the same general area must be followed during at least one winter. This will be the main objective of our next study.

SUMMARY