Radiofrequency power is supplied to the dee by a vacuum-tube oscillator. The frequency of oscillation must decrease during the acceleration cycle, as indicated above. For protons, the frequency at the start of acceleration is 36 megacycles (Mc). At the end of acceleration the frequency is only 18 Mc (see Fig. 5). This change in frequency is achieved by varying the electrical capacitance in the tuned circuit of the oscillator. (This is what you do when you dial a different station on a radio.) This tuned circuit, which is called the cyclotron resonator, is shown in Fig. 6.

Because the frequency must change over such a wide range (from 36 to 18 Mc), the electrical capacitance must be varied by a factor of 20 to 1. This is done by a variable capacitor of unique design. It resembles two giant tuning forks. As the blades of the tuning forks vibrate, the capacitance is alternately increased and decreased by the required amount.

These two tuning forks must be kept in step with great precision. This is to prevent the oscillator from exciting lateral rf resonances. With a cyclotron of this size, this is a problem. These resonances, if excited, would cause loss of beam. The method for keeping the blades moving together is as follows: The blades are made to vibrate at their resonant frequency, which is approximately 64 cycles per second. One set of blades operates at its natural frequency as a tuning-fork oscillator. The second set of blades is driven from an amplified sample of the signal from the first; its natural period is adjusted automatically to equal that of the first. The amplitude of each set is regulated to within 0.003 in.; the phase angle between the blades is regulated to within 1 deg.

Ions are accelerated only when the radiofrequency is decreasing (Fig. 5). The remaining portion of the cycle is "dead time." Thus, 64 pulses, each of about 500 microseconds' duration, are obtained every second. The average ion current of a pulsed beam is much less than for a continuous beam, such as that obtained from a conventional cyclotron (see Table I). This is part of the price paid for higher energies.

Internal Targets and Beam Extractor

The simplest target is one placed inside the vacuum tank where the circulating beam will strike it. The target may be any substance that the physicist or chemist wants to irradiate. The target material is attached to a movable probe. If the experimenter wants to use the full-energy beam, he places the target at the maximum usable radius of the circulating beam (82 inches). However, if he desires to use ions having less than the maximum energy, he inserts the target further into the cyclotron so that it is intercepted sooner.

TABLE I

Comparison of external-beam energy and current for a
synchrocyclotron and a conventional cyclotron
184-Inch Synchrocyclotron
ProtonsDeuteronsAlpha particles
Beam energy — maximum (Mev)730460910
Beam intensity — peak current (μa)[a]12012040
Beam intensity — average current (μa)0.750.750.25
60-Inch Cyclotron
Beam energy — maximum (Mev)122448
Beam intensity — peak current (μa)100150100
Beam intensity — average current (μa)708060
[a] μa = microampere