The physical properties of these Rupert's drops have been examined with great care by M. Victor de Luynes, and the results of his experiments have been communicated to the Société de Secours des Amis des Sciences. For the purposes of this article, many of his experiments have been repeated, confirming in general his observations, and others have also been instituted. The toughness and hardness of these drops are remarkable; the thick pear-shaped portion will bear a sharp stroke with a hammer without breaking; nor can it be scratched with a diamond. To break the tapering thread or tail, as it may be conveniently called, requires considerable force. To find out what weight was required to do this, a series of experiments was performed, the results of which are given in the table following. The tail of a drop was placed over a small hole bored in the top of a table; a hook was then adjusted round a part of the tail which measured 19 on a Birmingham wire gauge; below the table and attached to this hook, a scale-pan was hung. This pan was then carefully loaded, all shock being avoided, until the thread was ruptured and the weight required to effect this was then noted:
| White Glass Rupert's Drops. | ||||||
| Gauge. | Strain. | |||||
| 19 | 16 | lb. | 0 | oz. | ||
| 19 | 15 | ½ | " | 0 | " | |
| 19 | 16 | " | 0 | " | ||
| 19 | (poor) | 9 | ¼ | " | 0 | " |
| Green Glass. | ||||||
| Gauge. | Strain. | |||||
| 19 | 18 | ¾ | " | 0 | " | |
| 19 | (poor) | 9 | " | 0 | " | |
| 19 | 28 | " | 6 | " | ||
| 16 | 26 | ¼ | " | 0 | " | |
It will be observed that the drops made from green bottle glass withstood a greater strain than those made from crown glass; the latter, in fact, did not break throughout their mass, but left a portion of the bulb unbroken, showing some fault in the tempering. It was with difficulty that the workmen could be induced to make drops out of this kind of glass, as they knew by experience that they usually failed to break perfectly, and they stated that it was quite impossible to make them with lead glass. To ascertain what force was required to fracture a thread of like dimensions that had not been tempered, one of the drops was heated to redness, and annealed by allowing it to cool very gradually. When subjected to the same trial, it was fractured by a weight of 12 ozs., and the drop did not break into small fragments, but behaved exactly like ordinary glass, thus showing that the glass had been untempered by the heating process. A piece of glass rod, drawn out into a thread in a gas flame, when subjected to the same conditions, bore a strain of 10 oz. A sewing-needle of the same thickness was broken by a weight of 3 lb. 14 oz., thus showing that the tail of the Rupert's drop was very much manner as to allow the tail to dip into hydrofluoric acid, it is found, that when the surface or skin is eaten away to a certain depth,
broken. In whatever way fractured, the particles, when examined by the microscope, show a crystalline structure, and do not at all resemble pieces of ordinary glass; when rubbed between the palms of the hands, they do not cut, nor scratch, nor penetrate the cuticle. If a drop be enclosed in plaster of Paris so as to leave a portion of the tail exposed, it may then be broken and all the particles will remain in situ. On removing the plaster, it will be found that the drop has been broken up into thousands of minute needle-shaped particles arranged in cones, the apices being in the direction of the tail. It would appear then from these experiments, and from observations with polarized light, that the glass in the interior of a Rupert's drop exists under enormous tension, and that it is only prevented from bursting into fragments by the outer skin; on its being broken in any part, the bond which holds together the constituent particles is broken also, and so, being acted upon by a repellent force, they fly away from one another. There is another kind of toy resembling in some respects the Rupert's drop, known as the Bologna bottle or philosopher's flask. It has the form of a soda-water bottle with the neck cut off, the bottom being rounded off and very much thicker than the walls. These flasks are sometimes formed accidentally in glass-works by the workman, who, in order to examine the quality of the glass, takes out a portion from the pot on the end of his blowpipe, and blows a small quantity of air into the mass, manipulating it in the usual manner. Whilst still at a very high temperature, it is detached from the blowpipe, and is probably allowed to fall on the ground in a place where there is a current of cold air, the exterior thus becoming suddenly chilled. When cold, these flasks will bear very rough handling, and will withstand the blow of a hammer on the outside, it being almost impossible to break them by striking the bottom; the interior will also bear the blow of a leaden bullet falling into it from a considerable height, but if a few grains of sand be allowed to fall into it, or if the inside skin be slightly scratched, the mass splits into fragments in the same manner as a Rupert's drop. The examination of these curious phenomena leads us to the subject of "toughened glass," as it has been termed. The invention of rendering articles of glass less fragile, which has given rise to so much public attention during the last year, is due to M. Alfred de la Bastie, a French engineer. His process consists in heating the glass to be toughened to a temperature close upon its softening point, and then plunging it into a bath of oil, or into a mixture of oleaginous substances kept at a much lower temperature. When this operation is successfully performed, the glass acquires properties very similar to those of Rupert's drops; it becomes much less fragile than ordinary glass, but when sufficient force is employed to fracture it, the whole flies into small pieces. It cannot be cut with a diamond, but is immediately disintegrated when the outer skin is scratched to a certain depth.
It is to be observed, however, that in particular cases it is possible both to saw and pierce the toughened glass. M. de Luynes reports, that when a square of St. Gobain plate glass that had been submitted to the process of tempering was examined by polarized light, it showed the appearance of a black cross, the arms of which were parallel to the sides of the square. The glass was sawed in two, along the line of the stem of the cross, without causing fracture. On examining the divided glass with polarized light, black bands and fringes of colour were observed, which, by their position, proved that the molecular condition of the glass had changed; on placing one half of the divided glass on the other half, the fringes and black bands disappeared—on folding one half on to the other, the black bands presented the appearance that would have been produced by glass of double the thickness. These facts show, that the molecular forces on the glass were arranged symmetrically in reference to the line of parting: and we may conclude that toughened glass being in a state of tension, similar to that of the Rupert drop, may be divided or pierced, provided that the molecules of the pieces produced are able to rearrange themselves into a stable equilibrium. Polarized light shows the directions on which the division can be made with safety.
M. de Luynes, in his communication referred to above, gives an account of some experiments performed on plates of glass of the same quality, tempered by this process, and untempered; one or two examples will suffice. A tempered plate measuring about[ [1] 6½ inches by 5 inches, and 2/10 inch thick, was placed between two wooden frames, and a weight of over 3½ ounces (100 grammes[ [2]) was allowed to drop upon it from a height of more than 13 feet (4 mètres[ [3]) without breaking it. It only broke, when double the weight was employed from the same height. A piece of ordinary glass under the same conditions broke, with the weight of 3½ oz. dropped upon it from a height 16 inches (0·40 mètre). Plates of toughened glass were allowed to fall on the floor from a height, or were thrown to a distance, without breaking. A rectangular piece of ordinary window glass, about 1/10 inch in thickness, was bent into the form of a bridge, and then subjected to the tempering process; placed upon the ground; it bore the weight of a man easily without breaking. A commission, instituted by the French naval authorities, to inquire into this process of M. de la Bastie, has reported at some length on the subject. The following series of experiments were tried with a view of ascertaining the comparative power of resistance of tempered and ordinary glass. The plates experimented upon were placed loosely in wooden frames constructed for the purpose.
Rectangular plates about 21 inches (0·525 m.) by 10 inches (0·248 m.) and 1/6 inch (0·004 m.) thick.
The frame with the glass inserted was laid on the ground, and in the middle of the plate a weight of more than 10 lbs. (5 kilogrammes[ [4]) was placed, and upon it as a base, other weights were placed, care being taken to avoid all shock.
1º Ordinary glass, broke with a weight of about 70 lb. (35 kilos.) having resisted weights of from 30 to 50 lb.