You had better adopt the rule to make m mean the Attribute which occurs in the MIDDLE Term or Terms. (I have chosen m as the symbol, because 'middle' begins with 'm'.)
Now, in representing the two Premisses, I prefer to begin with the NEGATIVE one (the one beginning with "no"), because GREY counters can always be placed with CERTAINTY, and will then help to fix the position of the red counters, which are sometimes a little uncertain where they will be most welcome.
Let us express, the "no nice Cakes are unwholesome (Cakes)", i.e. "no y-Cakes are m'-(Cakes)". This tells us that none of the Cakes belonging to the y-half of the cupboard are in its m'-compartments (i.e. the ones outside the central Square). Hence the two compartments, No. 9 and No. 15, are both 'EMPTY'; and we must place a grey counter in EACH of them, thus:--
-----------
|0 | |
| --|-- |
| | | | |
|--|-----|--|
| | | | |
| --|-- |
|0 | |
-----------
We have now to express the other Premiss, namely, "some new Cakes are unwholesome (Cakes)", i.e. "some x-Cakes are m'-(Cakes)". This tells us that some of the Cakes in the x-half of the cupboard are in its m'-compartments. Hence ONE of the two compartments, No. 9 and No. 10, is 'occupied': and, as we are not told in WHICH of these two compartments to place the red counter, the usual rule would be to lay it on the division-line between them: but, in this case, the other Premiss has settled the matter for us, by declaring No. 9 to be EMPTY. Hence the red counter has no choice, and MUST go into No. 10, thus:--
-----------
|0 | 1|
| --|-- |
| | | | |
|--|-----|--|
| | | | |
| --|-- |
|0 | |
-----------
And now what counters will this information enable us to place in the SMALLER Diagram, so as to get some Proposition involving x and y only, leaving out m? Let us take its four compartments, one by one.
First, No. 5. All we know about THIS is that its OUTER portion is empty: but we know nothing about its inner portion. Thus the Square MAY be empty, or it MAY have something in it. Who can tell? So we dare not place ANY counter in this Square.
Secondly, what of No. 6? Here we are a little better off. We know that there is SOMETHING in it, for there is a red counter in its outer portion. It is true we do not know whether its inner portion is empty or occupied: but what does THAT matter? One solitary Cake, in one corner of the Square, is quite sufficient excuse for saying "THIS SQUARE IS OCCUPIED", and for marking it with a red counter.
As to No. 7, we are in the same condition as with No. 5--we find it PARTLY 'empty', but we do not know whether the other part is empty or occupied: so we dare not mark this Square.