If you meet with Syllogisms of this kind, you may work them, quite easily, by the system I have given you: you have only to make 'are' mean 'are CAPABLE of being', and all will go smoothly. For "some x are y" will become "some x are capable of being y", that is, "the Attributes x, y are COMPATIBLE". And "no x are y" will become "no x are capable of being y", that is, "the Attributes x, y are INCOMPATIBLE". And, of course, "all x are y" will become "some x are capable of being y, and none are capable of being y'", that is, "the Attributes x, y are COMPATIBLE, and the Attributes x, y' are INCOMPATIBLE." In using the Diagrams for this system, you must understand a red counter to mean "there may POSSIBLY be something in this compartment," and a grey one to mean "there cannot POSSIBLY be anything in this compartment."

3. Fallacies.

And so you think, do you, that the chief use of Logic, in real life, is to deduce Conclusions from workable Premisses, and to satisfy yourself that the Conclusions, deduced by other people, are correct? I only wish it were! Society would be much less liable to panics and other delusions, and POLITICAL life, especially, would be a totally different thing, if even a majority of the arguments, that scattered broadcast over the world, were correct! But it is all the other way, I fear. For ONE workable Pair of Premisses (I mean a Pair that lead to a logical Conclusion) that you meet with in reading your newspaper or magazine, you will probably find FIVE that lead to no Conclusion at all: and, even when the Premisses ARE workable, for ONE instance, where the writer draws a correct Conclusion, there are probably TEN where he draws an incorrect one.

In the first case, you may say "the PREMISSES are fallacious": in the second, "the CONCLUSION is fallacious."

The chief use you will find, in such Logical skill as this Game may teach you, will be in detecting 'FALLACIES' of these two kinds.

The first kind of Fallacy--'Fallacious Premisses'--you will detect when, after marking them on the larger Diagram, you try to transfer the marks to the smaller. You will take its four compartments, one by one, and ask, for each in turn, "What mark can I place HERE?"; and in EVERY one the answer will be "No information!", showing that there is NO CONCLUSION AT ALL. For instance,

"All soldiers are brave;
Some Englishmen are brave.
&there4 Some Englishmen are soldiers."

looks uncommonly LIKE a Syllogism, and might easily take in a less experienced Logician. But YOU are not to be caught by such a trick! You would simply set out the Premisses, and would then calmly remark "Fallacious PREMISSES!": you wouldn't condescend to ask what CONCLUSION the writer professed to draw--knowing that, WHATEVER it is, it MUST be wrong. You would be just as safe as that wise mother was, who said "Mary, just go up to the nursery, and see what Baby's doing, AND TELL HIM NOT TO DO IT!"

The other kind of Fallacy--'Fallacious Conclusion'--you will not detect till you have marked BOTH Diagrams, and have read off the correct Conclusion, and have compared it with the Conclusion which the writer has drawn.

But mind, you mustn't say "FALLACIOUS Conclusion," simply because it is not IDENTICAL with the correct one: it may be a PART of the correct Conclusion, and so be quite correct, AS FAR AS IT GOES. In this case you would merely remark, with a pitying smile, "DEFECTIVE Conclusion!" Suppose, of example, you were to meet with this Syllogism:--