Thus, while an open fire is the healthiest known means of heating a small room, and should be in the family sitting-room of every house, and in offices and other places where the occupants are at liberty to move closer or further from the fire at pleasure, yet it is entirely unsuitable for a large building, or for rooms where many persons are assembled, and have fixed seats, similar to a school, lecture-room, factory, &c.
A stove in a room heats both by direct radiation and by heating the air that comes in immediate contact with it.
But our latest styles of elegant new patent gas-consuming air-tight stoves, require so small an amount of air to support combustion, that there is a strong probability of the occupants of a room thus heated smothering to death for want of fresh air, sooner or later, and generally the former.
But a stove, if properly used, creates a comfortable and wholesome atmosphere, and is one of the most economical means of heating now known. There should always be a separate pipe for introducing the fresh air from the external atmosphere, which fresh and cold air should be discharged on or near the top of the stove. And if this supply of fresh air is abundant, with a constant evaporation of moisture sufficient to compensate for the increased capacity therefor due to the additional heat given it, and an opening into a heated flue near the ceiling, to be opened in the evening when the gas-lights are burning, or when the room is too hot, and kept shut at all other times, with another opening into a heated flue on a level with the floor, which should be kept always open to carry off the cold, heavy foul air from the floor—a stove thus arranged for many small isolated rooms, makes one of the most economical as well as most comfortable and wholesome means of heating at our command. It combines the three great essentials necessary for comfort and health—warmth, partially by direct radiation, fresh air and moisture. But neither the open fire nor the stove, as desirable as they may be in many small rooms, are suitable for large rooms, especially where many persons are assembled. Heating principally by circulating warmed air, or in combination with direct radiation from exposed pipes filled with steam or hot water, is in such cases more convenient.
It is in connection with this system of heating by circulating warm air, that the erroneous views in relation to ventilation generally entertained by the public, produce the most injurious effects.
The special points to be borne in mind in considering this subject are that, when in motion, warmer air rises and colder air falls; but when at rest, the stratums of air of different temperatures arrange themselves horizontally.
One other thing: we must remember temperature has nothing to do with the purity or impurity of the air. The pure air entering a room is sometimes colder than the average temperature of the room, and falls to the floor, forcing the warmer, and, in that case, fouler air to the upper part of the room.
But frequently, in winter, the fresh air enters warmer than the average temperature of the room, and rises to the ceiling, and flows across the room above the colder and fouler air that has been longer in the room. You must not forget the experiments in our first lecture, showing that the breath in an ordinary room, of a temperature of 70°, fell to the floor instead of rising to the ceiling. I propose illustrating this part of our subject, by using a little glass room to show the movements of air of different temperatures. We can either use air of different temperatures, showing the motion of the various currents by a little smoke; or, as the laws governing the circulation of liquids of different densities are so similar, and by the use of a little coloring matter will express to an audience of this kind more promptly and clearly the ideas which we wish to convey, we therefore propose using the different colored liquids this evening.
The colors, of course, have nothing to do with the densities, but are merely used as a convenient method of designation; the red representing heat or rarity, and blue, coldness or density.