“I asked the question, but did not expect an answer. God shows economy in the use of heat by accomplishing many different results by its agency. I do not mean that the same identical heat accomplishes different results at the same time. The same force cannot accomplish two works. As man cannot spend his money and at the same time keep it, no more can heat be used and not used up in that form. The heat which raises the temperature can do nothing else at the same time, and when it is employed as force it ceases to affect temperature. But by this one agency of heat the Creator brings very various works to pass. Heat expands bodies, relaxes cohesive attraction, and brings the chemical affinities into activity. By this means the elements of Nature are subdued to human uses, seeds germinate, all the processes of vegetable life go on, and digestion and nutrition are carried forward in the bodies of animals. By the agency of heat the winds blow, the deep waters of the ocean circulate, clouds are formed, dew and rain refresh the earth, rivers flow, and all the activities of life fill the world. The employment of one agency for the accomplishment of so many works indicates economy in the expenditure of force and means. Moreover, the same heat appears and reappears again and again, passing from the sensible to the latent form and back again, asserting itself alternately in raising the temperature and as active force. A beam of heat falls upon our world: it is partly absorbed by the earth, and warms it. A part of that warmth is used in setting the chemical affinities in action in the sprouting of seeds; a part warms the air by conduction; a part is radiated, and being stopped by the vapor in the air, warms it; the heat of the air is partly used in the evaporation of water: the vapor formed is condensed and waters the earth, and gives out the heat by which it was formed; that raises the temperature of the air; a part of it is used in deoxidizing carbonic acid and building up the forests; the forest tree falls by the woodman’s axe, is burned for fuel, and gives out its heat again, or if it falls and decays, the result is the same; the heat given out by combustion cooks the laborer’s dinner and warms his room, or it goes out again, and is used in preparing food for the growing wheat; that wheat is used for food, and by slow combustion in the blood the heat is again evolved, the body is warmed, and the chemical operations of digestion and nutrition are maintained; the heat is radiated or conducted from the body into the atmosphere, and again raises the temperature and goes to do other work. At last, so far as our earth is concerned, it escapes into the stellar spaces, and goes to bless other worlds. In all these operations no heat-force is frittered away and wasted and lost. This is one of the accepted doctrines of physical science. Heat is used bountifully, but economically and without waste.

“Even the inequalities and variations of temperature must be counted economy in the use of heat. The heat of midday is not needed at all hours, and therefore it is not always provided; the heat of summer is not always useful, and is therefore not given; a higher temperature for a part of the year and a part of the day is necessary, and is bestowed. The smallest amount of heat is so disposed as to accomplish the largest result. Keep in mind, then, the economical aspect of God’s management of heat.

“I would also have you remember how few are the principles involved in all the ways and means for transporting heat and equalizing temperature. All the various phenomena which we have examined can be brought under two general principles. The first principle or method is the heating and cooling of bodies. Bodies absorb heat; they part with their heat by conduction or radiation. If they are heated and cooled without change of place, heat is transported in time, but not in place. If the body be removed from one place to another between the heating and the cooling or between the cooling and the heating, heat is transported in both time and space. This applies alike to solids, liquids, and gases; each one is a carrier of heat in proportion to its specific heat.

“The second principle or method is the transportation of heat by the change of sensible to latent heat and its restoration to a sensible state. Under this principle there are four cases:

“1. Heat is employed in the evaporation of liquids, and is restored again to use as affecting temperature by the condensation of the vapor.

“2. Heat is employed in liquifying solids, and becomes latent thereby, and returns to the sensible state when the liquid solidifies. These two principles find their grandest application in the changes of water: of this application I have chiefly spoken; but they apply also to other bodies—to metals as well as to liquids.

“3. Heat is rendered latent in the expansion of gases from removal of pressure, and latent heat becomes sensible by the compression of gases.

“4. Heat is employed in the deoxidation of carbonic acid or other combinations of oxygen, and is evolved in combustion. While in the latent condition, heat may be kept without loss for an unlimited period of time or transported from equator to pole. By the various applications of these two general principles, all the different methods of equalizing temperature are determined.

“I would have you remember also that these processes for transporting heat and modifying temperature are not confined to the regular changes of days and seasons and the permanent differences of zones, but apply to every possible difference of temperature. One minute the sun shines out in full splendor; the next, a cloud hides his face and cuts off his fervent beams; the methods employed to soften the heat of the one minute and the chill of the next are the same which equalize the temperature of the seasons. Evaporation carries off the heat from the seething tropics, evaporation carries off the excess of heat from the bodies of animals and men. The same methods are equally efficient upon the grandest and upon the smallest scale.

“In this connection let me give one or two illustrations of the delicacy with which general principles adapt themselves to the minutest circumstances. When the earth is wet, it is fitting that evaporation should go on rapidly and remove the excess of water, but when the ground is drier, it is fitting that evaporation should be checked and the remaining moisture spared. This result is secured not merely by the lack of moisture at the surface, but also by the decreased capacity of the earth for absorbing heat. A dark color absorbs heat more readily than a lighter color, and the earth becomes, as a general rule, darker when wet; and lighter when dry. Moist earth, therefore, receives heat more readily than dry earth, and the excessive moisture is the more rapidly carried off by evaporation.