Fig. 1. The Sun’s path in the sky at different seasons.

This north and south motion of the sun may be noted more directly in another way. Seen from any given place on the earth, each star rises and sets at the same points of the horizon always, and has the same course in the sky; but the rising and setting points of the sun, which on about the 21st of March are due east and west, travel daily further north, and the sun mounts daily higher in northern skies until about the 20th of June; then he returns towards the south, passing the east and west points again about September 23, and reaches his furthest point south about December 21. (The dates vary slightly owing to Leap Year). The dates on which the sun reaches his furthest north and furthest south points in this yearly journey are called the “solstices,” because his motion seems to be checked, and he pauses or “stands” before reversing his direction; the dates on which he passes the midway point are the “equinoxes,” because at those points he is on the equator, and makes day and night equal all over the earth.

The time taken by the sun to pass from one vernal (spring) equinox to another is 365 days, 5 hours, 48 minutes, 45 seconds. Since this slow motion along the zodiac is from west to east, contrary to the rapid east to west motion which he shares with all the stars, he takes a little longer to complete a daily revolution than they do; and if we reckon a solar day as consisting of 24 hours, a “sidereal” (or star) day is equal to 23 hours, 56 minutes, 4 seconds.

These are very elementary facts, but they are the fundamental facts of astronomy, and without recollecting and holding them clearly in mind we cannot understand Dante’s allusions, nor see the fitness of any astronomical system, ancient or modern. To those who have only read about astronomy in books, and have not watched the skies, they may be puzzling, and I would beg these readers to make a few simple observations for themselves, as this will help them more than any written explanation can ever do to see the heavens with Dante’s eyes. To appreciate the connected movement of the whole sky, some bright stars near the Pole should first be watched, such as the Great Bear and Cassiopeia, or for those in the southern hemisphere the Southern Cross, Canopus, Achernar. Their motions should be compared with those of bright stars near the equator, such as Orion, Virgo, or Aquila. The constellations of the zodiac should be studied, and notes made of the seasons at which each disappears in the rays of the sun.

The sun’s north and south movements can be easily recognized by noting at what points of the horizon he rises or sets at different times of the year; and the different heights to which he rises in the sky are most simply observed by marking the length of the shadow of some tree or pole at midday. Or if some rough kind of gnomon[2] be made, even a flat piece of wood, laid on a sunny window-sill, with a long nail driven vertically into it, the movement and varying length of the shadow, from hour to hour, and from day to day, will make one realize vividly the diurnal and the seasonal movement of the sun. This device, in one form or another, was probably the first astronomical instrument invented, and by its means ancient astronomers in many lands solved important problems.

It is not necessary to explain that the daily apparent movements are caused in reality by the earth’s rotation on her axis, and the yearly apparent movements by her revolution round the sun. These are the book-learned facts which for the most part obscure our perception of the very things on which they are based. I would ask the reader to do his best, for the moment, to forget them.

The movements of the moon among the stars are much more easily observed than those of the sun, since we can see the stars at the same time, and her revolution is much more rapid. She also is apparently carried round with the daily east to west movement, and she also has a west to east motion of her own, but so fast that it takes her round the star sphere in one month, instead of one year. This revolution also takes place in the zodiac. She is first visible as a fine crescent, just following the sun, in the west, after he has set; next night she is markedly further from the sun, on her eastward course, and is a larger crescent; she continues increasing her distance from the sun and the size of her disc, until, as full moon, she is rising in the east when the sun sets opposite her in the west, and setting when the sun rises. After this, she begins to wane, and, still travelling in the same direction, rises later and later at night, and sets in the day; she draws gradually nearer to the sun on the western side, till at last, as a fine crescent with the horns turned in the other direction (i.e. always away from the sun), she appears just before the rising sun in the east. Then for a short time she is lost in his rays, till she emerges as a new moon on the sunset side again.