Simple and intelligible as these principles are, they have not always been acted upon, but partly neglected, partly expressly rejected, not because they were considered false, but because the difficulties of their application were looked upon as insurmountable. Therefore another method of examination was adopted; the spores of a certain form were sown, and sooner or later they were looked after to see what the seed had produced—not every single spore—but the seed en masse, that is, in other words, what had grown on that place where the seed had been sown. As far as it relates to those forms which are so widely spread, and above all grow in conjunction with one another—and that is always the case in the specimens of which we speak—we can never be sure that the spores of the form which we mean to test are not mingled with those of another species. He who has made an attentive and minute examination of this kind knows that we may be sure to find such a mixture, and that such an one was there can be afterwards decidedly proved. From the seed which is sown, these spores, for which the substratum was most suitable, will more easily germinate, and their development will follow the more quickly. The favoured germs will suppress the less favoured, and grow up at their expense. The same relation exists between them as between the seeds, germs, and seedlings of a sown summer plant, and the seeds which have been undesignedly sown with it, only in a still more striking manner, in consequence of the relatively quick development of the mildew fungus.

Therefore, that from the latter a decided form, or a mixture of several forms, is to be found sown on one spot, is no proof of their generic connection with one which has been sown for the purpose of experiments; and the matter will only be more confused if we call imagination to our aid, and place the forms which are found near one another, according to a real or fancied resemblance, in a certain series of development. All those statements on the sphere of form and connection, which have for their basis such a superficial work, and are not based on the clear exposition of the continuity of development, as by the origin of the connection of the Mucor with Penicillium, Oidium lactis and Mucor, Oidium and Penicillium, are rejected as unfounded.

A source of error, which can also interfere in the last-named superficial method of cultivation for experiments, is, viz., that heterogeneous unwished-for spores intrude themselves from without, among the seed which is sown, but that has been until now quite disregarded. It is of great importance in practice, but in truth, for our present purpose, synonymous with what we have already written. Those learned in the science of this kind of culture lay great stress on its importance, and many apparatuses have been constructed, called “purely cultivating machines,” for the purpose of destroying the spores which are contained in the substratum, and preventing the intrusion of those from without. The mixture in the seed which is sown has of course not been obviated. These machines may, perhaps, in every other respect, fulfil their purpose, but they cannot change the form of the question, and the most ingeniously constructed apparatus cannot replace the attention and intellect of the observer.[B]

Two distinct kinds of phenomena have been grouped under the term “polymorphy.” In one series two or more forms of fruit occur consecutively or simultaneously on the same individual, and in the other two or more forms appear on a different mycelium, on a different part of the same plant, or on a matrix wholly distinct and different; in the latter case the connection being attested or suspected circumstantially, in the former proved by the method suggested by De Bary. It will at once be conceded that in cases where actual growth and development substantiate the facts the polymorphy is undoubted, whilst in the other series it can at best be little more than suspected. We will endeavour to illustrate both these series by examples.

One of the first and earliest suspected cases of dualism, which long puzzled the older mycologists, was observed amongst the Uredines, and many years ago it was held that there must be some mysterious association between the “red rust” (Trichobasis ruligo vera) of wheat and grasses and the “corn mildew” (Puccinia graminis) which succeeded it. The simple spored rust first makes its appearance, and later the bilocular “mildew.” It is by no means uncommon to find the two forms in the same pustule. Some have held, without good reason, that the simple cells became afterwards divided and converted into Puccinia, but this is not the case; the uredo-spores are always simple, and remain so except in Uredo linearis, where every intermediate stage has been observed. Both are also perfect in their kind, and capable of germination.

What the precise relations between the two forms may be has as yet never been revealed to observers, but that the two forms belong to one species is not now doubted. Very many species of Puccinia have already been found associated with a corresponding Trichobasis, and of Phragmidium with a relative Lecythea, but it may be open to grave doubt whether some of the very many species associated by authors are not so classed upon suspicion rather than observation. We are ready to admit that the evidence is strong in favour of the dimorphism of a large number of species—it may be in all, but this awaits proof, or substantial presumption on good grounds. Up to the present we know that there are species of Trichobasis which have never been traced to association with a Puccinia, and doubtless there will be species of Puccinia for which no corresponding Uredo or Trichobasis can be found.

Tulasne remarks, in reference to Puccinia sonchi, in one of his memoirs, that this curious species exhibits, in effect, that a Puccinia may unite three sorts of reproductive bodies, which, taking part, constitute for the mycologists of the day three entirely different plants—a Trichobasis, a Uromyces, and a Puccinia. The Uredines are not less rich, he adds, in reproductive bodies of divers sorts than the Pyrenomycetes and the Discomycetes; and we should not be surprised at this, since it seems to be a law, almost constant in the general harmony of nature, that the smaller the organized beings are, the more their races are prolific.

In Puccinia variabilis, Grev., it is common to find a unicellular form, species of Trichobasis, in the same pustules. A like circumstance occurs with Puccinia violarum, Link., and Trichobasis violarum, B.; with Puccinia fallens, C., and Trichobasis fallens, Desm.; also with Puccinia menthæ, P., and Trichobasis Labiatarum, D. C. In Melampsora, again, the prismatic pseudospores of Melampsora salicina, Lev., are the winter fruits of Lecythea caprearum, Lev., as those of Melampsora populina, Lev., are of Lecythea populina, Lev. In the species of Lecythea themselves will be found, as De Bary[C] has shown, hyaline cysts of a larger size, which surround the pseudospores in the pustules in which they are developed.

A good illustration of dimorphism in one of the commonest of moulds is given by De Bary in a paper from which we have already quoted.[D] He writes thus:—In every household there is a frequent unbidden guest, which appears particularly on preserved fruits, viz., the mould which is called Aspergillus glaucus. It shows itself to the naked eye as a woolly floccy crust over the substance, first purely white, then gradually covered with little fine glaucous, or dark green dusty heads. More minute microscopical examination shows that the fungus consists of richly ramified fine filaments, which are partly disseminated in the substratum, and partly raised obliquely over it. They have a cylindrical form with rounded ends, and are divided into long outstretched members, each of which possesses the property which legitimatizes it as a vesicle in the ordinary sense of the word; it contains, enclosed within a delicate structureless wall, those bodies which bear the appearance of a finely granulated mucous substance, which is designated by the name of protoplasm, and which either equally fills the cells, or the older the cell the more it is filled with watery cavities called vacuoles.

All parts are at first colourless. The increase in the length of the filaments takes place through the preponderating growth near their points; these continually push forward, and, at a short distance from them, successive new partitions rise up, but at a greater distance, the growth in the length ceases. This kind of growth is called point growth. The twigs and branches spring up as lateral dilatations of the principal filament, which, once designed, enlarges according to the point growth. This point growth of every branch is, to a certain extent, unlimited. The filaments in and on the substratum are the first existing members of the fungus; they continue so long as it vegetates. As the parts which absorb nourishment from and consume the substance, they are called the mycelium. Nearly every fungus possesses a mycelium, which, without regard to the specific difference of form and size, especially shows the described nature in its construction and growth.