265.—Lettuce Mould.
Peronospora gangliformis.

Potato Mould.—Towards the close of the summer of 1845, in the course of a few weeks, every one became aware of the fact that a new disease had appeared which threatened the entire destruction of the potato crop. Until then it seemed to have been almost, although not entirely unknown. It first appeared in the Isle of Wight about the middle of August, and a week afterwards had become general in the South of England, and the next week there were but few sound samples of potatoes in the London market. Early in September the disease had commenced its ravages in Ireland, and shortly afterwards it was discovered in Scotland. With the same rapidity it seems to have spread throughout Europe and North America, or at least the western portion of the former and the northern districts of the latter. It must not be imagined, however, that the Isle of Wight was the centre from which this disease spread over such an extended area and with such alarming rapidity. From this spot it doubtless made its first appearance that year amongst our own crops, but there is not the least doubt of its existence both on the continent of Europe and in North America in the previous year, and the farmers of Belgium had noted its appearance in the province of Liège as far back as 1842 and 1843. Other diseases had been observed affecting the potato crop before, and one which was also associated with a parasitic fungus had made its appearance in 1815. It is also exceedingly probable that, in a milder form, the murrain was present with us a year or two before it broke out to such an alarming extent. A correspondent to the Gardeners’ Chronicle, in 1844, notices it in the Isle of Thanet, and another testifies to its occurrence in districts of Ireland for two or three years previous to its general outbreak. The description of the disease in Canada, in 1844, contained in a letter addressed to Dr. Bellingham, and quoted by the Rev. M. J. Berkeley,[[9]] leaves no doubt of its identity:—“During the months of July and August (1844), we had repeated and heavy showers, with oppressive heat, and an atmosphere strongly charged with electricity. Towards the close of the month of August I observed the leaves to be marked with black spots, as if ink had been sprinkled over them. They began to wither, emitting a peculiar, offensive odour; and before a fortnight the field, which had been singularly luxuriant, and almost rank, became arid and dried up, as if by a severe frost. I had the potatoes dug out during the month of September, when about two-thirds were either positively rotten, partially decayed and swarming with worms, or spotted with brownish-coloured patches, resembling flesh that had been frost-bitten. These parts were soft to the touch, and upon the decayed potatoes I observed a whitish substance like mould.”

[9]. Journal of Horticultural Society of London, vol. i. p. 11.

Although this disease made its first appearance, in the middle of August, 1845, in the Isle of Wight, it had already appeared in Belgium in the same year, a month previously; and although it may have been noticed in other British localities in 1844, it was known in Canada and in St. Helena in the same year to a far greater extent, and in Liège as early as 1842. There are, therefore, good grounds for believing that the European centre was Belgium; but if M. Boussingault was correct in stating that “this malady is well known in rainy years at Bogota, where the Indians live almost entirely on potatoes,” then it is not of European but American origin, and is probably derived from districts not far remote from those whence Europe first received the potato itself.

It would occupy too much space to detail the different theories and opinions relative to the causes of this disease to which 1845 and subsequent years gave birth. Suffice it to say, that the lapse of years has silently proved the majority of these to have been fallacious. All such as imputed to peculiar electric conditions, a wet season, or other meteorological influences, the disease which has re-appeared under different conditions and influences, and in seasons remarkable for dryness, are manifestly refuted; whilst its mycological origin has continued to gain adherents, and the gradual accumulation of fresh facts has almost placed it beyond dispute not only that the potato disease is accompanied by, but results from, fungal growth. Unfortunately, this disease has been so prevalent, more or less, during the past eighteen years, that few have been without the opportunity of making themselves acquainted with its external appearance. To this may be added the minute and exact account of its development, as recorded by that excellent mycologist and careful observer, the Rev. M. J. Berkeley, in 1846, and to which, even now, nothing of importance can be supplemented or abstracted:—“The leaves began suddenly to assume a paler, and at length a yellowish tint, exhibiting here and there discoloured spots. More or less coinciding with these spots, on the reverse of the leaves, appeared white mealy patches, consisting of a minute mould, proceeding, either singly or in fascicles, from the stomata, and arising from an abundant branched mycelium creeping in every direction through the loose tissue beneath the cuticle. The upper surface rarely, if ever, exhibits the mould, it being almost physically impossible for its delicate threads to penetrate the closely-packed cells which, being arranged side by side, leave scarcely any intercellular passages. The mould, in a few hours from its first piercing the apertures of the stomata, perfects its fruit, and in so doing completely exhausts the matrix, which in consequence withers. No sooner have a number of the leaves been attacked, than the stem itself is subject to change, becoming spotted here and there with dark brown patches, in which the cells are mostly filled with a dark grumous mass, without exhibiting any mucedinous filaments; though, occasionally, I have ascertained their presence. Very rarely fructifying but dwarfed specimens of the mould occur upon it. The stem now rapidly putrefies, the cuticle and its subjacent tissue become pulpy, and separate when touched from the woody parts beneath. The whole soon dries up, and in many instances exhibits in the centre the black, irregular fungoid masses which are known under the name of Sclerotium varium, and which are believed to be the mycelium of certain moulds in a high state of condensation.

“If the tubers are now examined, the greater part will often be found smaller than usual, especially if the disease has commenced at an early stage of growth; but in their natural condition, while here and there a tuber, particularly if it has been partially exposed, exhibits traces of disease. The surface is, however, soon marked with livid patches, commencing generally about the eyes, or at the point of connection with the fructifying shoots: these rapidly acquire a spotted appearance, the spots being rather waved, and assuming often a more or less concentric arrangement. Sometimes—especially on the smoother kinds of tuber—two or more regular systems of concentric spots are exhibited on the same tuber. The skin now withers, and is easily separated; the spots become depressed and of a yellowish tinge; and if the tubers be laid in a moist place, in a day or two—sometimes in a few hours—the same mould which destroyed the leaves springs from them, piercing the cuticle from within, yet not scattered, as on the leaves, but forming a conspicuous white tuft. If a section of the diseased tuber be made on the first symptoms of the disease, little brownish or rusty specks are found in the cellular tissue, confined, with very rare exceptions, to the space between the cuticle and the sac, if I may so call it, of spiral vessels and their accompanying tissue, which, springing from the subterranean branches, pass into the tuber, making their way to the several buds disposed on the surface. These spots consist at first of a quantity of discoloured cells, mixed more or less with others in a healthy condition. The grains of fecula are for a long time perfectly healthy; the cells themselves, so far from being looser, are more closely bound together than in the more healthy portions. The rusty spots soon exhibit a darker tint, spreading in every direction and becoming confluent; they at length extend beyond the barrier of vascular tissue, and attack the central mass. The tuber, meanwhile, assumes a disagreeable smell, decomposes more or less rapidly, other Fungi establish themselves on the surface, or in the decaying mass, which emits a highly fetid odour, resembling that of decaying agarics; the union of the cells is dissolved, animalcules or mites make their appearance, till at last the whole becomes a loathsome mass of putrescence.”

The form of the mould itself is represented (fig. 264) as exhibited under the microscope, with the nodose swellings of the branches, and spores attached to the tips. These acrospores are filled with a granular mass, from which, as hereafter described, zoospores are produced. The branching dendroidal threads of this fungus proceed from a creeping mycelium or spawn of entangled filaments which interpenetrates the matrix, upon which it establishes itself. Upon these threads spherical bodies were long since observed by Dr. Payen, and, under the name of Artotrogus, described by Dr. Montagne as a new species of fungus. Dr. de Bary failed to detect oospores on the mycelium of this mould, although the organs found by Payen in some sort resemble them. De Bary sought in vain, also, for the spherical bodies described by the author above named. It has been calculated that one square line of the under surface of the leaves is capable of producing 3,270 acrospores, each of which yields at least six zoospores, sometimes double that number; thus we have 19,620 reproductive bodies from that small space. The mycelium from the zoospores is capable of penetrating the cellular tissue in twelve hours, and, when established there, it bursts through the stomata of the leaves, and fruit is perfected in from fifteen to eighteen hours. Since the zoospores are perfected and ready to germinate in twenty-four hours from their being placed in water, it becomes almost impossible to calculate the myriads of fungi that may be produced from a single centre. Dr. de Bary has also demonstrated that the brown spots so characteristic of the disease are the result of the action of the spores or zoospores. By placing a quantity of spores in a drop of water on the leaves, stems, and tubers under a glass sufficiently air-tight to prevent evaporation, he produced the brown spots, and traced their progress from the earliest stages.

There are a few practical conclusions which may be drawn from these discoveries. In the first place, it is clearly shown by the production of the spots that the fungus is capable of causing the disease, a fact which has been disputed, but now placed beyond doubt. The inference is, that not only is it capable of producing, but is really the cause of the potato murrain. With bodies so minute and active as the zoospores, there can no longer be difficulty in accounting for their penetrating the tissues of the plant. They are most active and productive in wet weather, especially when it is also warm. Moisture appears to be essential, and a dry season the greatest enemy to the spread of the disease. That bodies so minute and subtle should have baffled all efforts to destroy or eradicate, is not now surprising. Whether any method will be found to contend successfully with it, is now more doubtful than ever. A careful reperusal of the old facts by the aid of this new light will tend to the elucidation of much of the mystery in which the subject has been involved. All who have hitherto been sceptical of the mycological source of one of the greatest pests of modern times should study M. de Bary’s pamphlet.

Plate XV.