His peculiar evenness of disposition enabled him quickly to recover from the effects of any unpleasant occurrence; indeed, he assures us that "the most perfect satisfaction" often came a day or two after "an event that afflicted me the most, and without any change having taken place in the state of things."
Another circumstance which tended to make life easy to him was his fixed resolution, that in any controversy in which he might be engaged, he would frankly acknowledge every mistake he perceived himself to have fallen into.
Priestley's scientific work is marked by rapidity of execution. The different parts do not hang together well; we are presented with a brilliant series of discoveries, but we do not see the connecting strings of thought. We are not then astonished when he tells us that sometimes he forgot that he had made this or that experiment, and repeated what he had done weeks before. He says that he could not work in a hurry, and that he was therefore always methodical; but he adds that he sometimes blamed himself for "doing to-day what had better have been put off until to-morrow."
Many of his most startling discoveries were the results of chance operations, "not of themes worked out and applied." He was led to the discovery of oxygen, he says, by a succession of extraordinary accidents. But that he was able to take advantage of the chance observations, and from these to advance to definite facts, constitutes the essential difference between him and ordinary plodding investigators. Although he rarely, if ever, saw all the bearings of his own discoveries, although none of his experiments was accurately worked out to its conclusion, yet he did see, rapidly and as it appeared almost at one glance, something of their meanings, and this something was enough to urge him on to fresh experimental work.
Although we now condemn Priestley's theories as quite erroneous, yet we must admire his undaunted devotion to experiment. He was a true student of science in one essential point, viz. Nature was for him the first and the last court of appeal. He theorized and speculated much, he experimented rapidly and not accurately, but he was ever appealing to natural facts; and in doing this he could not but lay some foundation which should remain. The facts discovered by him are amongst the very corner-stones on which the building of chemical science was afterwards raised.
So enthusiastic was Priestley in the prosecution of his experiments, that when he began, he tells us, "I spent all the money I could possibly raise, carried on by my ardour in philosophical investigation, and entirely regardless of consequences, except so far as never to contract any debts." He seems all through his life to have been perfectly free from anxiety about money affairs.
Priestley's manner of work shows how kindly and genial he was. He trained himself to talk and think and write with his family by the fireside; "nothing but reading aloud, or speaking without interruption," was an obstruction to his work.
Priestley was just the man who was wanted in the early days of chemical science. By the vast number, variety and novelty of his experimental results, he astonished scientific men—he forcibly drew attention to the science in which he laboured so hard; by the brilliancy of some of his experiments he obliged chemists to admit that a new field of research was opened before them, and the instruments for the prosecution of this research were placed in their hands; and even by the unsatisfactoriness of his reasoning he drew attention to the difficulties and contradictions of the theories which then prevailed in chemistry.
That the work of Priestley should bear full fruit it was necessary that a greater than he should interpret it, and should render definite that which Priestley had but vaguely shown to exist.
The man who did this, and who in doing it really established chemistry as a science, was Lavoisier.