We should not expect such a man as this to make any great use of books; one of his friends tells us that he heard him declare on a public occasion that he could carry his library on his back, and yet had not read half of the books which comprised it.
The love of investigation which characterized Dalton when young would naturally be increased by this course of intellectual life. How strong this desire to examine everything for himself became, is amusingly illustrated by a story told by his medical adviser, Dr. Ransome. Once when Dalton was suffering from catarrh Dr. Ransome had prescribed a James's powder, and finding his patient much better next day, he congratulated himself and Dalton on the good effects of the medicine. "I do not well see how that can be," said Dalton, "as I kept the powder until I could have an opportunity of analyzing it."
As Dalton grew older he became more than ever disinclined to place much trust in the results obtained by other naturalists, even when these men were acknowledged to be superior to himself in manipulative and experimental skill. Thus, as we have already learned, he could not be brought to allow the truth of Gay-Lussac's experimentally established law regarding gaseous combinations; he preferred to attribute Gay-Lussac's results to errors of experiment. "The truth is, I believe, that gases do not unite in equal or exact measures in any one instance; when they appear to do so it is owing to the inaccuracy of our experiments."
That Dalton did not rank high as an experimenter is evident from the many mistakes in matters of fact which are to be found in the second part of his "New System." A marked example of his inaccuracy in purely experimental work is to be found in the supposed proof given by him that charcoal, after being heated to redness, does not absorb gases. He strongly heated a quantity of charcoal, pulverized it, and placed it in a Florence flask, which was connected by means of a stopcock with a bladder filled with carbonic acid: after a week he found that the flask and its contents had not sensibly increased in weight, and he concluded that no carbonic acid had been absorbed by the charcoal. But no trustworthy result could be obtained from an experiment in which the charcoal, having been deprived of air by heating, was again allowed to absorb air by being pulverized in an open vessel, and was then placed in a flask filled with air, communication between the carbonic acid and the external air being prevented merely by a piece of bladder, a material which is easily permeated by gases.
Dalton used a method which can only lead to notable results in natural science when employed by a really great thinker; he acquired a few facts, and then thought out the meaning of these. Almost at the beginning of each investigation he tried to get hold of some definite generalization, and then he proceeded to amass special facts. The object which he kept before himself in his experimental work was to establish or to disprove this or that hypothesis. Every experiment was conducted with a clearly conceived aim. He was even willing to allow a large margin for errors of experiment if he could thereby bring the results within the scope of his hypothesis.
That the law of multiple proportions is simply a generalization of facts, and may be stated apart from the atomic theory, is now generally admitted. But in Dalton's mind this law seems to have arisen rather as a deduction from the theory of atoms than to have been gained as a generalization from experiments. He certainly always stated this law in the language of the atomic theory. In one of his walking excursions he explained his theory to a friend, and after expounding his views regarding atomic combinations, he said that the examples which he had given showed the necessary existence of the principle of multiple proportions: "Thou knowest it must be so, for no man can split an atom." We have seen that carburetted hydrogen was one of the compounds on the results of the analysis of which he built his atomic theory; yet we find him saying of the constitution of this compound that "no correct notion seems to have been formed till the atomic theory was introduced and applied in the investigation."
When Dalton was meditating on the laws of chemical combination, a French chemist, M. Proust, published analyses of metallic oxides, which proved that when a metal forms two oxides the amount of metal in each is a fixed quantity—that there is a sudden jump, as it were, from one oxide to another. We are sometimes told that from these experiments Proust would have recognized the law of multiple proportions had his analyses only been more accurate; but we know that Dalton's analyses were very inaccurate, and yet he not only recognized the law of multiple proportions, but propounded and established the atomic theory. Something more than a correct system of keeping books and balancing accounts is wanted in natural science. Dalton's experimental results would be the despair of a systematic analyst, but from these Dalton's genius evolved that splendid theory which has done so much to advance the exact investigation of natural phenomena.
Probably no greater contrast could be found between methods of work, both leading to the establishment of scientific (that is, accurate and precise) results, than that which exists between the method of Dalton and the method pursued by Priestley.
Priestley commenced his experiments with no particular aim in view; sometimes he wanted to amuse himself, sometimes he thought he might light upon a discovery of importance, sometimes his curiosity incited him to experiment. When he got facts he made no profound generalizations; he was content to interpret his results by the help of the prevailing theory of his time. But each new fact only spurred him on to make fresh incursions into the fields of Nature. Dalton thought much and deeply; his experimentally established facts were to him symbols of unseen powers. He used facts as Hobbes says the wise man uses words: they were his counters only, not his money.
When we ask how it was that Dalton acquired his great power of penetrating beneath the surface of things and finding general laws, we must attribute this power in part to the training which he gave himself in physical science. It was from a consideration of physical facts that he gained the conception of ultimate particles of definite weight. His method was essentially dynamical; that is, he pictured a gas as a mass of little particles, each of which acted on and was acted on by, other particles. The particles were not thrown together anyhow; definite forces existed between them. Each elementary or compound gas was pictured as a system of little particles, and the properties of that gas were regarded as dependent on the nature and arrangement of these particles. Such a conception as this could only be gained by a careful and profound thinker versed in the methods of physical and mathematical science. Thus we see that although Dalton appeared to gain his great chemical results by a method which we are not generally inclined to regard as the method of natural science, yet it was by virtue of his careful training in a branch of knowledge which deals with facts, as well as in that science which deduces particular conclusions from general principles, that he was able to introduce his fruitful conceptions into the science of chemistry.