Graham divided substances into those which diffused easily and quickly into water, and those which diffused very slowly; he showed that the former were all crystallizable substances, while the latter were non-crystallizable jelly-like bodies. Graham called these jelly-like substances colloids; the easily diffusible substances he called crystalloids. He proved that a colloidal substance acts towards a crystalloid much as water does; that the crystalloid rapidly diffuses through the colloid, but that colloids are not themselves capable of diffusing through other colloids. On this fact was founded Graham's process of dialysis. As colloid he employed a sheet of parchment paper, which he stretched on a ring of wood or caoutchouc, and floated the apparatus so constructed—the dialyser—on the surface of pure water in a glass dish; he then poured into the dialyser the mixture of substances which it was desired to separate. Let us suppose that this mixture contained sugar and gum; the crystalloidal sugar soon passed through the parchment paper, and was found in the water outside, but the colloidal gum remained in the dialyser.

If the mixture in the dialyser contained two crystalloids, the greater part of the more diffusible of these passed through the parchment in a short time along with only a little of the less diffusible; a partial separation was thus effected.

This method of dialysis was applied by Graham to separate and obtain in the pure state many colloidal modifications of chemical compounds, such as aluminium and tin hydrates, etc. By his study of these peculiar substances Graham introduced into chemistry a new class of bodies, and opened up great fields of research.

Matter in the colloidal state appears to be endowed with properties which are quite absent, or are hidden, when it is in the ordinary crystalloidal condition. Colloids are readily affected by the smallest changes in external conditions; they are eminently unstable bodies; they are, Graham said, always on the verge of an impending change, and minute disturbances in the surrounding conditions may precipitate this change at any moment. Crystalloids, on the other hand, are stable; they have definite properties, which are not changed without simultaneous large changes in surrounding conditions. But although, to use Graham's words, these classes of bodies "appear like different worlds of matter," there is yet no marked separating line between them. Ice is a substance which under ordinary conditions exhibits all the properties of crystalloids, but ice formed in contact with water just at the freezing point is not unlike a mass of partly dried gum; it shows no crystalline structure, but it may be rent and split like a lump of glue, and, like glue, the broken pieces may be pressed together again and caused to adhere into one mass.

"Can any facts," asks Graham, "more strikingly illustrate the maxim that in Nature there are no abrupt transitions, and that distinctions of class are never absolute?"

In the properties of colloids and crystalloids Graham saw an index of diversity of molecular structure. The smallest individual particle of a colloid appeared to him to be a much more complex structure than the smallest particle of a crystalloid. The colloidal molecule appeared to be formed by the gathering together of several crystalloidal molecules; such a complex structure might be expected readily to undergo change, whereas the simpler molecule of a crystalloid would probably present more definite and less readily altered properties.

In this research Graham had again, as so often before, arrived at the conception of various orders of small particles. In the early days of the Daltonian theory it seemed that the recognition of atoms as ultimate particles, by the placing together of which masses of this or that kind of matter are produced, would suffice to explain all the facts of chemical combinations; but Dalton's application of the term "atom" to elements and compounds alike implied that an atom might itself have parts, and that one atom might be more complex than another. The way was thus already prepared for the recognition of more than one order of atoms, a recognition which was formulated three years after the appearance of Dalton's "New System" in the statement of Avogadro, "Equal volumes of gases contain equal numbers of molecules;" for we have seen that the application of this statement to actually occurring reactions between gases obliges us to admit that the molecules of hydrogen, oxygen and many other elementary gases are composed of two distinct parts or atoms.

Berzelius it is true did not formally accept the generalization of Avogadro; but we have seen how the conception of atom which runs through his work is not that of an indivisible particle, but rather that of a little individual part of matter with definite properties, from which the mass of matter recognizable by our senses is constructed, just as the wall is built up of individual bricks. And as the bricks are themselves constructed of clay, which in turn is composed of silica and alumina, so may each of these little parts of matter be constructed of smaller parts; only as clay is not brick, and neither silica nor alumina is clay, so the properties of the parts of the atom—if it has parts—are not the properties of the atom, and a mass of matter constructed of these parts would not have the same properties as a mass of matter constructed of the atoms themselves.

Another feature of Graham's work is found in the prominence which he gives to that view of a chemical compound which regards it as the resultant of the action and reaction of the parts of the compound. As the apparent stability of chemical compounds was seen by Davy to be the result of an equilibrium of contending forces, so did the seemingly changeless character of any chemical substance appear to Graham as due to the orderly changes which are continually proceeding among the molecules of which the substance is constructed.

A piece of lime, or a drop of water, was to the mind of Graham the scene of a continual strife, for that minute portion of matter appeared to him to be constructed of almost innumerable myriads of little parts, each in more or less rapid motion, one now striking against another and now moving free for a little space. Interfere with those movements, alter the mutual action of those minute particles, and the whole building would fall to pieces.