The ancients drew no such distinction between portions of their chemical knowledge, limited as it was, as is implied by the modern terms "organic" and "inorganic chemistry." An organic acid—acetic—was one of the earliest known substances belonging to the class of acids; many processes of chemical handicraft practised in the olden times dealt with the manufacture of substances, such as soap, leather or gum, which we should now call organic substances. Nor did the early alchemists, although working chiefly with mineral or inorganic substances, draw any strict division between the two branches of chemistry. The medical chemists of the sixteenth century dealt much with substances derived from plants and animals, such as benzoic and succinic acids, spirit of wine, oils, etc. But neither in their nomenclature nor in their practice did they sharply distinguish inorganic from organic compounds. They spoke of the quintessence of arsenic and the quintessence of alcohol; they applied the term "oil" alike to the products of the action of acids on metallic salts and to substances obtained from vegetables. But towards the end of the seventeenth century, at the time that is when the phlogistic theory began to gain pre-eminence, we find gradually springing up a division of chemical substances into mineral, animal and vegetable substances—a division which was based rather on a consideration of the sources whence the substances were derived than on the properties of the substances themselves, and therefore a division which was essentially a non-chemical one.

About a century after this, systematic attempts began to be made to trace some peculiarity of composition as belonging to all compounds of organic, that is, of animal or vegetable, origin. As very many of the substances then known belonging to this class were more or less oil-like in their properties—oils, fats, balsams, gums, sugar, etc.—organic substances generally were said to be characterized by the presence in them of the principle of oil.

Such a statement as this, although suited to the conceptions of that time, could not be received when Lavoisier had shown chemists how Nature ought be examined. With the definite conception of element introduced by the new chemistry, came an attempt to prove that organic compounds were built up of elements which were rarely found together in any one compound of inorganic origin. Substances of vegetable origin were said by Lavoisier to be composed of carbon, hydrogen and oxygen, while phosphorus and nitrogen, in addition to those three elements, entered into the composition of substances derived from animals. But neither could this definition of organic compounds be upheld in the face of facts. Wax and many oils contained only carbon and hydrogen, yet they were undoubtedly substances of vegetable or animal origin. If the presence of any two of the three elements, carbon, hydrogen and oxygen, were to be regarded as a sufficient criterion for the classification of a compound, then it was necessary that carbonic acid—obtained by the action of a mineral acid on chalk—should be called an organic compound.

To Berzelius belongs the honour of being the chemist who first applied the general laws of chemical combination to all compounds alike, whether derived from minerals, animals, or vegetables. The ultimate particles, or molecules, of every compound were regarded by Berzelius as built up of two parts, each of which might itself be an elementary atom, or a group of elementary atoms. One of these parts, he said, was characterized by positive, the other by negative electricity. Every compound molecule, whatever was the nature or number of the elementary atoms composing it, was a dual structure (see p. 164). Organic chemistry came again to be a term somewhat loosely applied to the compounds derived from animals or vegetables, or in the formation of which the agency of living things was necessary. Most, if not all of these compounds contained carbon and some other element or elements, especially hydrogen, oxygen and nitrogen.

But the progress of this branch of chemistry was impeded by the want of any trustworthy methods for analysing compounds containing carbon, oxygen and hydrogen. This want was to be supplied, and the science of organic chemistry, and so of chemistry in general, was to be immensely advanced by the labours of a new school of chemists, chief among whom were Liebig and Dumas.

Let us shortly trace the work of these two renowned naturalists. The life-work of the first is finished; I write this story of the progress of his favourite science on the eighty-second birthday of the second of these great men, who is still with us a veteran crowned with glory, a true soldier in the battle against ignorance and so against want and crime.


Justus Liebig was born at Darmstadt, on the 12th of May 1803. The main facts which mark his life regarded apart from his work as a chemist are soon told. Showing a taste for making experiments he was apprenticed by his father to an apothecary. Fortunately for science he did not long remain as a concoctor of drugs, but was allowed to enter the University of Bonn as a student of medicine. From Bonn he went to Erlangen, at which university he graduated in 1821. A year or two before this time Liebig had begun his career as an investigator of Nature, and he had already made such progress that the Grand Duke of Hesse-Darmstadt was prevailed on to grant him a small pension and allow him to prosecute his researches at Paris, which was then almost the only place where he could hope to find the conditions of success for the study of scientific chemistry. To Paris accordingly he went in 1823. He was so fortunate—thanks to the good graces of the renowned naturalist Alexander von Humboldt—as to be allowed to enter the laboratory of Gay-Lussac, where he continued the research on a class of explosive compounds, called fulminates, which he had begun before leaving Darmstadt.

A year later Liebig was invited to return to his native country as Professor of Chemistry in the small University of Giessen—a name soon to be known wherever chemistry was studied, and now held dear by many eminent chemists who there learned what is meant by the scientific study of Nature.

The year before Liebig entered the laboratory of Gay-Lussac there came to Paris a young and enthusiastic student who had already made himself known in the scientific world by his physiological researches, and who was now about to begin his career as a chemist.