systems of photo-telegraphy, and is the only one at all suitable for wireless transmission. The photograph or picture which is to be transmitted is fastened out perfectly flat upon a copying-board. A strong light is placed on either side of this copying board, and is concentrated upon the picture by means of reflectors. The camera which is used for copying has a single line screen interposed between the lens and sensitised plate, and the effect of this screen is to break the picture up into parallel lines. Thus a white portion of the photograph would consist of very narrow lines wide apart, while the dark portion would be made up of wide lines close together; a black part would appear solid and show no lines at all. From this line negative it will be necessary to take off a print upon a specially prepared sheet of metal. This consists of a sheet of thick lead- or tinfoil, coated upon one side with a thin film of glue to which bichromate of potash has been added; the bichromate possessing the property of rendering the glue waterproof when acted upon by light. The print can be taken off by artificial light (arc lamps being generally used), but the exact time to allow for printing can only be found by experiment, as it varies considerably according to the thickness of the film. The printing finished, the metal print is washed under running water, when all those parts not acted upon by light, i.e. the parts between the lines, are

washed away, leaving the bare metal. We have now an image composed of numerous bands of insulating material (each band varying in width according to the density of the photograph at any point from which it is prepared) attached to a metal base, so that each band of insulating material is separated by a band of conducting material. It is, of course, obvious that the lines on the print cannot be wider apart, centre to centre, than the lines of the screen used in preparing it. A good screen to use is one having 50 lines to the inch, but one is perhaps more suitable for experimental work a little coarser, say 35 lines to the inch. To use a screen having 50 or more lines to the inch, the transmitting apparatus, as will be evident later on, will require to be very nearly perfect.

Before proceeding further it will perhaps be as well to make an experiment. If we take one of the metal prints or, more simple, draw a sketch in insulating ink upon a sheet of metal A, Fig. 5, and connect a battery B and the galvanometer D as shown, we shall find on drawing the free end of the wire across the metal plate that all the time the wire is in contact with the lines of insulating material the needle of the galvanometer will remain

at zero, but where it is in contact with the metal plate the needle is deflected.

From this experiment it will be seen that we have in our metal line print, which consists of alternate lines of insulating and conducting material, a method by which an electric circuit can be very easily made and broken. It is, of course, necessary to have some arrangement whereby the whole of the surface of the metal print is utilised for this purpose to the best advantage. One type of transmitting machine used for this purpose is represented by the diagram, Fig. 6. The cylinder A is fastened to the steel shaft B, which runs in the two bearings D and D', the bearing D' having an internal thread corresponding to that on the shaft. The stylus in this class of machine is a fixture, the cylinder being given a lateral as well as a revolving movement. As it is impossible to use a rigid drive, a flexible coupling F is employed between the shaft B and the motor.

Another type of machine is shown in Fig. 7. The drum in this case is stationary, the table T moving laterally by reason of the screwed shaft