When a hill is to be surmounted, the climb should be made without effort, that is, effort understood in its technical sense. The position should be such as to permit of work being done by the foot, and the power should be applied at the right time and place. Assistance by a pull on the handle-bars means lessened power on the stroke. Effort succeeds effort. The work should be done by the foot, the pelvis being the fulcrum. The saddle should be the real fulcrum. If the hands are used to do the work by pulling, the pelvis becomes the only fulcrum, and the bicycle saddle is not used at all for the application of power. The weight should be made to do as much of the work as possible, and the added resistance of lever pressure made auxiliary.
To obtain leverage for the hands, it is necessary to use a fulcrum. Where is that fulcrum located? Each set of muscles pulls on its point of application—the hand on the arm, the arm on the shoulder, the shoulder on the thorax, the thorax on the pelvis. If more power is needed, it must require effort.
In hill-climbing, effort is a physiological phenomenon associated with great expenditure of force. In making an effort, exerting force, the air-passages of the lungs are closed, the air in them making of them an air-cushion, as it were, which acts as a fulcrum for certain extra muscular combinations. This accounts for the feeling of suffocation experienced in severe hill-climbing, which should never be prolonged. The hill should be climbed with the hands held easily, not gripping the handles; and gripping and pulling on the handles, it should be remembered, lessen the power for prolonged work. Squeezing the handle-bars induces involuntary lung compression, and pulling on them adds to the strain. Lean forward, if need be, to balance and maintain the equilibrium, but do not maintain the centre of gravity by pulling on the handles.
WHEELING ONE FOOT OVER.
The fixed position of the arms, when sitting with spinal column erect, certainly prevents a full, free inflation of the lungs; the shoulders are held fixed, and between the saddle and the fixed shoulders there is no up and down lung-play. In running, the forearms and shoulders permit free chest expansion. In the racing position on a bicycle, the arms and shoulders take the same relative position as in running, and a full, free lung expansion is obtained.
No rigidity is maintained between shoulders and saddle in the racing drop-position.
For speeding and work of that kind, the position that allows of the greatest flexibility as well as the greatest leverage is the position to be chosen.
In travelling and in every-day wheeling, the position should be one permitting the minimum expenditure of power; the weight should be supported, yet the position should be such as to permit the weight to be used as a propelling power. The hands should be held where they are supported and in the position where they can most easily control the wheel under any change of conditions. The saddle should be placed where the foot can act most effectively at all parts or at as many parts as possible of the circle that the pedal describes. The height of the saddle should be calculated to permit of extension of the leg without supporting the weight on the saddle, which causes compression of the larger veins and arteries. The foot should at all times be fully on the pedal; that is, the position should permit of throwing all the weight on to the pedals, whatever the position of the cranks at the moment. The handle-bar should be adjusted; also length of arm and relative position; and the weight, height, and curve of bar adapted to suit individual build.
Length of crank, gear, height, position, and adjustments of saddle may be used as factors in adjustment of position for ease of movement and prevention of fatigue. Each individual has different combinations of lever power, varying with the lengths of the different parts of different limbs. One may have a long thigh-bone with short lower leg; another may have just the reverse combination—short thigh-bone and long lower leg.