The inclined Plane and the Wedge.

The inclined plane is to be next considered. When a heavy body is to be raised, it is often convenient to lay a sloping artificial road of planks, up which it may be pushed or drawn. This mechanical power, however, is but of little service without the assistance of wheels or rollers; we shall, therefore, speak of it as it is applied in another manner, under the name of the wedge, which is, in fact, a moving inclined plane; but if it is required to explain the properties of the inclined plane by the panorganon, the wooden road may be raised and set to any inclination that is required, and the sledge may be drawn upon it as in the former experiments.

Let one end of a lever, N. Plate 2. Fig. 7. with a wheel at one end of it, be hinged to the post of the frame, by means of a gudgeon driven or screwed into the post. To prevent this lever from deviating sideways, let a slip of wood be connected with it by a nail, which shall be fast in the lever, but which moves freely in a hole in the rail. The other end of this slip must be fastened to a stake driven into the ground at three or four feet from the lever, at one side of it, and towards the end in which the wheel is fixed (Plate 2. Fig 10. which is a vue d'oiseau) in the same manner as the treadle of a common lathe is managed, and as the treadle of a loom is sometimes guided.[25]

EXPERIMENT XI.

Under the wheel of this lever place an inclined plane or half-wedge (Plate 2. Fig. 7.) on the wooden road, with rollers under it, to prevent friction;[26] fasten a rope to the foremost end of the wedge, and pass it through the pulleys (P 4. and P 3.) as in the fifth experiment. Let a boy draw the sledge by this rope over his shoulder, and he will find, that as it advances it will raise the weight upwards; the wedge is five feet long, and elevated one foot. Now, if the perpendicular ascent of the weight, and the space through which he advances, be compared, he will find, that the space through which he has passed will be five times as great as that through which the weight has ascended; and that this wedge has enabled him to raise five times as much as he could raise without it, if his strength were applied, as in Experiment i, without any mechanical advantage. By making this wedge in two parts hinged together, with a graduated piece to keep them asunder, the wedge may be adjusted to any given obliquity; and it will be always found, that the mechanical advantage of the wedge may be ascertained by comparing its perpendicular elevation with its base. If the base of the wedge is 2, 3, 4, 5, or any other number of times greater than its height, it will enable the boy to raise respectively 2, 3, 4, or 5 times more weight than he could do in Experiment i, by which his power is estimated.

The Screw.

The screw is an inclined plane wound round a cylinder; the height of all its revolutions round the cylinder taken together, compared with the space through which the power that turns it passes, is the measure of its mechanical advantage.[27] Let the lever, used in the last experiment, be turned in such a manner as to reach from its gudgeon to the shaft of the Panorganon, guided by an attendant lever as before. (Plate 2. Fig. 8.) Let the wheel rest upon the lowest helix or thread of the screw: as the arms of the shaft are turned round, the wheel will ascend, and carry up the weight which is fastened to the lever.[28] As the situation of the screw prevents the weight from being suspended exactly from the centre of the screw, proper allowance must be made for this in estimating the force of the screw, or determining the mechanical advantage gained by the lever: this can be done by measuring the perpendicular ascent of the weight, which in all cases is better, and more expeditious, than measuring the parts of a machine, and estimating its force by calculation; because the different diameters of ropes, and other small circumstances, are frequently mistaken in estimates.

The space passed through by the moving power, and by that which it moves, are infallible data for estimating the powers of engines. Two material subjects of experiments, yet remain for the Panorganon; friction, and wheels of carriages: but we have already extended this article far beyond its just proportion to similar chapters in this work. We repeat, that it is not intended in this, or in any other part of our design, to write treatises upon science; but merely to point out methods for initiating young people in the rudiments of knowledge, and of giving them a clear and distinct view of those principles upon which they are founded. No preceptor, who has had experience, will cavil at the superficial knowledge of a boy of twelve or thirteen upon these subjects; he will perceive, that the general view, which we wish to give our pupils of the useful arts and sciences, must certainly tend to form a taste for literature and investigation. The sciolist has learned only to talk—we wish to teach our pupils to think, upon the various objects of human speculation.

The Panorganon may be employed in trying the resistance of air and water; the force of different muscles; and in a great variety of amusing and useful experiments. In academies, and private families, it may be erected in the place allotted for amusement, where it will furnish entertainment for many a vacant hour. When it has lost its novelty, the shaft may from time to time be taken down, and a swing may be suspended in its place. It may be constructed at the expense of five or six pounds: that which stands before our window, was made for less than three guineas, as we had many of the materials beside us for other purposes.

[21] When this question was sometime afterwards repeated to S——, he observed, that the feather would throw down the castle, if its swiftness were so great as to make up for its want of weight.