1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60
61 62 63 64 65 66 67 68 69 70
71 72 73 74 75 76 77 78 79 80
81 82 83 84 85 86 87 88 89 90
91 92 93 94 95 96 97 98 99 100

We have test sheets where the numbers from 1 to 100 are arranged in rows of 10, forming a square. Here the child's exercise consists in underlining, in different squares, the multiples of 2, 3, 4, 5, 6, 7, 8, 9, 10. The numbers so underlined stand out like a design in such a way that the child easily can study and compare the tables. For instance, in the square where he underlines the multiples of 2 all the even numbers in the vertical columns are marked; in the multiple of 4 we have the same linear grouping—a vertical line—but the numbers marked are alternate numbers; in 6 the same vertical grouping continues, but one number is marked and two are skipped; and again in the multiples of 8 the same design is repeated with the difference that every fourth number is underlined. On the square marked off for the multiples of 3 the numbers marked form oblique lines running from right to left and all the numbers in these oblique lines are underlined. In the multiples of 6 the design is the same but only the alternating numbers are underlined. The 6 therefore, partakes of the type of the 2 and of the 3; and both of these are indeed its factors.


VI

SQUARE AND CUBE OF NUMBERS

Let us take two of the two-bead bars (green) which were used in counting in the first bead exercises. Here, however, these form part of another series of beads. Along with these two bars there is a small chain:

By joining two like bars, the chains represent 2 × 2. There is another combination of these same objects—the two bars are joined together not in a chain but in the form of a square: