The method employed consists in measuring the conductivity acquired by air under the action of radio-active bodies; this method possesses the advantage of being rapid and of furnishing figures which are comparable. The apparatus employed by me for the purpose consists essentially of a plate condenser, A B (Fig. 1). The active body, finely powered, is spread over the plate B, making the air between the plates a conductor. In order to measure the conductivity, the plate B is raised to a high potential by connecting it with one pole of a battery of small accumulators, P, of which the other pole is connected to earth. The plate A being maintained at the potential of the earth by the connection C D, an electric current is set up between the two plates. The potential of plate A is recorded by an electrometer, E. If the earth connection be broken at C, the plate A becomes charged, and this charge causes a deflection of the electrometer. The velocity of the deflection is proportional to the intensity of the current, and serves to measure the latter.
But a preferable method of measurement is that of compensating the charge on plate A, so as to cause no deflection of the electrometer. The charges in question are extremely weak; they may be compensated by means of a quartz electric balance, Q, one sheath of which is connected to plate A and the other to earth. The quartz lamina is subjected to a known tension, produced by placing weights in a plate, π; the tension is produced progressively, and has the effect of generating progressively a known quantity of electricity during the time observed. The operation can be so regulated that, at each instant, there is compensation between the quantity of electricity that traverses the condenser and that of the opposite kind furnished by the quartz. In this way, the quantity of electricity passing through the condenser for a given time, i.e., the intensity of the current, can be measured in absolute units. The measurement is independent of the sensitiveness of the electrometer.
In carrying out a certain number of measurements of this kind, it is seen that radio-activity is a phenomenon capable of being measured with a certain accuracy. It varies little with temperature; it is scarcely affected by variations in the temperature of the surroundings; it is not influenced by incandescence of the active substance. The intensity of the current which traverses the condenser increases with the surface of the plates. For a given condenser and a given substance the current increases with the difference of potential between the plates, with the pressure of the gas which fills the condenser, and with the distance of the plates (provided this distance be not too great in comparison with the diameter). In every case, for great differences of potential the current attains a limiting value, which is practically constant. This is the current of saturation, or limiting current. Similarly, for a certain sufficiently great distance between the plates the current hardly varies any longer with the distance. It is the current obtained under these conditions that was taken as the measure of radio-activity in my researches, the condenser being placed in air at atmospheric pressure.
I append curves which represent the intensity of the current as a function of the field established between the plates for two different plate distances. Plate B was covered with a thin layer of powdered metallic uranium; plate A, connected with the electrometer, was provided with a guard-ring.
Fig. 2.
Fig. 3.
Fig. 2 shows that the intensity of the current becomes constant for high potential differences between the plates. Fig. 3 represents the same curves on another scale, and comprehends only relative results for small differences of potential. At the origin, the curve is rectilinear; the ratio of the intensity of the current to the difference of potential is constant for weak forces, and represents the initial conduction between the plates. Two important characteristic constants of the observed phenomenon are therefore to be recognised:—(1) The initial conduction for small differences of potential; (2) the limiting current for great potential differences. The limiting current has been adopted as the measure of the radio-activity.
Besides the difference of potential established between the two plates, there exists between them an electromotive force of contact, and these two sources of current combine their effects; for this reason, the absolute value of the intensity of the current changes with the sign of the external difference of potential. In every case, for considerable potential differences, the effect of the electromotive force of contact is negligible, and the intensity of the current is therefore the same whatever be the direction of the field between the plates.