The fossil Eozoön consists of a succession of parallel rows or tiers of chambers, in which the sarcode of the living animal had been replaced by a siliceous infiltration, so that when the calcareous shell was destroyed by dilute acid, the cast was found to be precisely like that of a Nummulite; thin slices of it taken in different directions being examined with a microscope, it was found that the siliceous matter had not only filled that portion of the chambers which had been occupied by the sarcode-body of the animal and the canal-system, but had actually taken the place of the pseudopodial threads, the softest and most transitory of living substances, which were put forth through tubuli in the shell-walls of less than the 110000 part of an inch in diameter. ‘These are the very threads themselves turned into stone by the substitution which took place, particle by particle, between the sarcode body of the animal and certain constituents of the water of the ocean, before the destruction of the sarcode by ordinary decomposition.’[[9]] The shell had an intermediate skeleton, but the minute tubes in the walls of the chambers are so characteristic of the Nummulites, that they were sufficient alone to determine the relationship of the Eozoön to its modern representative.

The external shape and limits to the size of the individual Eozoön have not been determined with certainty, on account of its indefinite mode of growth, and the manner in which the fossilized masses are connected with the highly crystalline matrix in which they are imbedded; there is no doubt, however, that they spread over an area of a foot or even more, and attained a thickness of several inches. As they seem to have increased laterally by buds which never fell off, they formed extensive reefs; at the same time they had a vertical growth, for in some of the reefs the older portions appear to have been fossilized before the newer were built up on them as a base, exactly like the coral reefs in the tropical ocean of the present day,[[10]] with this difference however, that shells and other crustaceans are associated with the corals, while no organic body has been found in the Eozoön reefs; nevertheless the Eozoön must have had food. It may therefore be inferred that parts at least of that primeval ocean swarmed with animal life, whose remains have been obliterated by metamorphic action. Carbon (which in the form of graphite both constitutes distinct beds, and is disseminated through the siliceous and calcareous strata of the Laurentian series, as well in Norway as in Canada), may indicate the existence of vegetation in the Eozoön period.

The Eozoön is by no means confined to Canada and central Europe. The serpentine marble of Tyree which forms part of the Laurentian system on the west of Scotland, and a similar rock in Skye, when subjected to minute examination, are found to present a structure clearly identical with that of the Canadian Eozoön. And the like structure has been discovered by Mr. Sanford in the serpentine marble of Connemara, known as Irish green. The age of that rock however, is doubtful: for when it was discovered to contain Eozoön, Sir Roderick Murchison who had previously studied its relations was at first inclined to believe it belonged to the Laurentian series; now however, he considers the Connemara marble to be of the Silurian age. ‘If this be the case it proves that the Eozoön was not confined to the Laurentian period, but that it had a vast range in time, as well as in geographical distribution; in this respect corresponding to many later forms of Foraminifera which have been shown by Messrs. Parker and Rupert Jones to range from the Trias to the present epoch.’[[11]]

The Carpenteria found in the Indian seas forms a link between the Foraminifera and Sponges. The shell is a minute cone adhering to the surface of corals and shells, by its wide base which spreads in broad lobes. Double-walled chambers and canals form a spiral within it, and are filled with a spongy sarcode of a more consistent texture than the sarcode of the Foraminifera, which in the larger chambers is supported by siliceous spicules similar to those which form the skeletons in sponges.

Class III.—Sponges.

According to the observations of Mr. Carter, sponges begin their lives as solitary Amœbæ which grow by multiplication into masses, and assume endless forms according to the species; turbinate, bell-shaped, like a vase, a crater, a fan, flat, foliaceous and lobed or branching and incrusting the surface of stones. All the Amœbæ are so connected as to form one compound animal. The whole substance of a sponge is permeated by innumerable tubes which begin in small pores on the surface, and continually unite with one another as they proceed in their devious course to form a system of canals increasing in diameter and ending in wide openings called oscula, on the opposite side of the mass. Currents of water enter through the pores on the surface, and bring minute portions of food which are seized upon by a vast multitude of Amœbæ with long cilia which form the walls of the tubes and canals; and after they have extracted the nutritious part, the offal is carried into the sea through the oscula, by the current of water whose flux is maintained by the vibrations of the cilia. In the compressed and many of the tubular sponges the water passes through them in a straight line; in branched and encrusting sponges, the afferent and efferent openings are on the same surface. The water is inhaled continuously and gently like an animal breathing, but it is rapidly and forcibly ejected; and in its passage it no doubt furnishes oxygen to aërate the juices of the compound animal, whose flesh or sarcode is irritable while alive, and which has the power to open and shut the pores and oscula of the canals, for the whole sponge forms one compound creature whose mass is nourished by the myriads of Amœbæ of which it is constituted.

Within the animated sarcode mass of the sponges there is in most cases a complicated skeleton of fibrous network, either horny, calcareous, or siliceous, which supports the soft mass, and determines its form.

Besides the skeleton, the mass of sponges is for the most part strengthened and defended by siliceous, and more rarely by calcareous, spines or spicules, either imbedded among the fibres of the skeleton, or fixed to them by their bases. The fibres of the skeleton network always unite, whether they be horny, calcareous, or siliceous; the spicules never, though they often lie in confused heaps over one another. They are of innumerable forms and arrangements. Some are like long needles lying close together in bundles, pointed or with a head like a pin at one or both ends; a great number are stellate with long or short rays; there may even be several different forms in the same sponge. Many calcareous sponges have cavities full of organic matter; and when the calcareous matter is dissolved by dilute acid, the organic base is left.

The common commercial sponges have a skeleton which consists of a network of tubular, horny, tough, and elastic fibres which cross in every direction. They have no spicules or very few; and when such do project from the horny skeleton, they are generally conical, attached by their bases, and their surface is often beset with little spines arranged at regular intervals, which gives them a jointed appearance. The common sponge which is so abundant in the Mediterranean has many forms; those from the coast of North America are no less varied, but that most used in the United States is turbinate, concave, soft, and tomentose.