Fig. 110. Hydra fusca.
These singular and voracious creatures increase like plants by budding. A little protuberance rises on the body by the bulging out of the double skin or wall, so that the interior of the bud is a clear cavity in communication with the stomach of the Hydra ([fig. 110], b). The bud increases in length, opens at its extremity into a mouth, and gradually acquires the size and form of its parent ([fig. 110], c); the communication is then by degrees closed, and at last the matured bud drops off and becomes an independent Hydra. Dr. Carpenter observed that this process, which so closely resembles the budding of plants, must be regarded as a modification of the ordinary nutritious process. The same may be said of the power of reparation, which every animal body possesses in a greater or less degree, but which is most remarkable among the lower tribes, for when an entire member is renewed, or even when the whole body is regenerated from a small fragment, which is the case in many polypes, it is by a process exactly analogous to that which takes place in the reparation of the simplest wound in our own bodies, and which is but a modification of the process that is constantly renewing, more or less rapidly, every portion of our frame.
There is but one species of the single colourless Hydra, but there are four compound fresh-water Hydræ in England—the rubra, viridis, vulgaris, which is of an orange brown, and the fusca. They have coloured particles, either imbedded in their external coat, or immediately under it. The Hydra viridis and H. vulgaris have short tentacles, whilst H. fusca, which is a rare animal, has arms from seven to eight inches long, and so contractile, that they can shrink into the space of small tubercules. All these four Hydræ are compound and permanently arborescent animals; each springs from one individual hydra of its own race, which increases in length and forms the stem, while young ones spring from it and from one another consecutively, like the compound branches of a tree. The numerous tentacles that hang down like fishing lines, thickly covered with thread-cells and their envenomed darts, catch prey for the whole colony, because the communication between the stomachs of the young polypes or Hydræ and that of their parent is never cut off, as it is when the offspring is deciduous; but tubes from the base of each individual Hydra or polype, passing through the stalks and branches of the living tree, unite their stomachs with the stomach or assimilating cavity in the main stem. Each individual polype, sometimes to the number of nineteen, after having digested its food or prey, ejects the refuse from its mouth, and the nutritious juice traverses the labyrinth of tubes to that general reservoir.
Since every portion of the bodies of the Hydræ is nearly of the same kind, and as every part of their surface inside and outside is in contact with the water in which they live, and from whence they derive oxygen to aërate their juices, no circulation is necessary in these simple animals, either for nutrition of their tissues, or to furnish them with oxygen.
If the Hydræ only produced deciduous buds which are developed into facsimiles of their parent, their race would become extinct, since they die in winter, unless kept artificially in water of mild temperature; but the animals are hermaphrodite, so that each individual produces fertilized eggs in autumn, which are hatched in spring, so that the Hydra is alternately propagated by deciduous buds and by eggs. The fresh-water hydræ are the only hydroids that are locomotive, all the others being fixed to some solid substance.
The oceanic Hydrozoa comprehend the three families of Corynidæ, Tubulariidæ, and Sertulariidæ. They are chiefly compound animals, numerous in genera and species, and have great variety of form. They may be simple and slender, they may be creeping or like a bush or tree, more or less compound and regularly branched according to the form of the polypary or tubular substance which unites their numerous hydra-form polypes into one animal. In general they are exceedingly small; three or four inches in height is quite gigantic. There is scarcely a still clear pool left by the retiring tide among the rocks along the British coasts, that does not abound with these beautiful creatures attached to stones, old shells, or sea-weeds. But they must be sought for amidst the luxuriant marine vegetation and profusion of animal life which adorn these rocky pools, otherwise they would escape notice; and even when large enough to be conspicuous, the eye must be aided in order to see the wonderful minuteness and delicacy of their structure. The aquaria have furnished an opportunity to study their forms, habits, and the marvellous circumstances of their lives and reproduction.
The compound oceanic Hydrozoa are essentially the same in structure as the compound fresh-water Hydræ. They differ, however, from them in often having a greater number of tentacles, and in being defended by a firm and flexible horny coat; notwithstanding which they increase in size by budding from the base of a single primary polype. The horny coat covers the bud and grows with it; but as soon as the polype is formed within it, the top of the bud opens and the young polype protrudes itself, so that a separation is effectually prevented; and while the stem and branches are being formed, and increase by the continual development of new buds, the communication between the stomachs of the whole brood of polypes with that in the parent stem is maintained by tubes from their bases passing through the interior fleshy matter in the branches.
In short these marine Hydrozoa consist of a ramified tube of sensitive animal matter, covered by an external flexible and often jointed and horny coat or skeleton, and they are fed by the activity of the tentacles and the digestive powers of frequently some hundreds of hydra-formed polypes, as in the Sertularia cupressina. The common produce of their food circulates as a fluid through the tubular cavities, for the benefit of the whole community, while the indigestible part is ejected from the mouth of each individual. The stomach of each polype has a more or less ciliated lining, containing cells with nutritive juices, which are supposed to perform the part of a liver. The liquid which circulates in these animals is colourless, with solid particles floating in it; and there is reason to believe that sea-water is admitted into the tubes, and that, mixed with the juices prepared by the polypes, it circulates through the ramified cavities, is sent into the hollow prehensile tentacles, and returns back into the digesting cavity after having contributed to respiration by its oxygen. The movements of this fluid appear to depend upon the delicate ciliated fibre which lines the cavities of the tentacles and those of the stem and branches of the compound animal, possibly aided by vital contraction. The soft skin of the tentacles contains cells full of liquid, with a thread and its sting or dart coiled up within it. These thread stings are protruded when the skin is irritated, which frequently gives the tentacles the appearance of being beset with bristled warts. In many instances these kinds of Hydrozoa are covered with a gelatinous substance, either as a film or thick coat.
The reproduction of many of these arborescent or compound Hydrozoa is one of the most unexpected and extraordinary phenomena in the life-history of the animal creation. For besides the system of consecutive budding from a single polype which builds up the compound animal, peculiar buds are formed and developed, which bear no resemblance whatever to the polype buds: on the contrary, when mature, they assume an organization exactly the same as that of the common jelly-fish or Medusoid Acalephæ, and swim freely away from their fixed parent as soon as they are detached. These medusiform zooids, which are extremely small, consist of a cup or umbrella-shaped bell of colourless transparent matter, which is their swimming apparatus; it is contracted and expanded by a muscular band under the rim, the water is alternately imbibed and forcibly ejected, and by its reaction the zooid is impelled in a contrary direction. From the centre of the bell a stomach hangs down in the form of a proboscis, with a mouth at its extremity, either with or without tentacles and sting-cells. Four canals, or a greater number, which begin in the stomach, radiate through the transparent matter of the bell, and are united by a circular canal round the rim; they convey the nutritious liquid from the stomach throughout the system. This general structure may be traced in the zooids of the three great families of the oceanic hydraform-zoophytes, in a greater or less degree, from deciduous perfect medusæ to such as are imperfect and fixed.