Such leaves as those of the hedgehog holly, Ilex Aquifolium, var. feroæ, and, to a less extent, bullate leaves, may also be mentioned here as illustrations of hypertrophy or enation.

Fig. 211.—Nephrodium molle. Ordinary frond and forked and crested varieties of the same, the crest arising from the inordinate development of the margins of the pinnules.

When the increased development occurs at the margin of the leaves, especially, the result is a wavy or crisped appearance, "folia undulata, vel crispa."[519] These conditions occur normally in such leaves as those of Rumex crispus, Malva crispa, &c., and are developed to an extreme degree in garden varieties of parsley, some kails, &c., as well as in many ferns, but these are probably cases rather of fission than enation as here understood.[520]

Enation from the sepals.—The basal lobes of the calyx in Campanula Medium, under normal circumstances, may be referred to in illustration of this occurrence, while the adventitious spurs on the calyx of some monstrous flowers seem due also to a like cause. These have already been alluded to at p. 315.

Enation from the corolla.—The instances of this are more frequent than in the case of the calyx, and admit of classification according as they occur in polypetalous or gamopetalous flowers, on the outer or inner surface of the petals, &c. Under natural circumstances the formation of scales, lobes, &c., from the petals, as in some Caryophylleæ, Sapindaceæ, &c. &c., may be explained, as already remarked, by this process, rather than by fission, chorisis, or by substitution of petals for stamens, &c. Each case must, however, be examined on its own merits, as it is not safe to decide upon the arrangement of parts in one flower by simply referring to the analogy of others. In the following illustrations the course of development has not, in all cases, been observed, and hence the explanation here given must be taken with some reserve; for should it prove that the adventitious lobes, &c., are formed simultaneously with the ordinary petals, the case will be one of chorisis rather than of enation, as here understood. Again, it may be that the supernumerary organs really represent petals or stamens in disguise, though this hypothesis demands the further assumption (in order to account for the interference with the law of alternation) that suppression of certain organs has taken place.

Taking first those instances in which the supplementary petals appear on the inner surface of the corolla, as being at once the most frequent, and as presenting the closest analogy, with similar conformations, under natural circumstances, certain double-flowered varieties of the Chinese primrose, Primula sinensis, may be mentioned. In these flowers the calyx is normal, the tube of the corolla is traversed by ten vascular bundles, and the limb is divided into ten fimbriated lobes. About halfway up the tube, on the inner surface, are given off five supernumerary petals, opposite to as many lobes of the corolla. Some of the supplementary petals have a stamen in front of them, in the same relative position as in the normal flower. In some cases the back or outer surface of the supplementary petal is turned towards the inner or upper surface of the primary corolla, thus [Symbol: ((turned 90 degrees cw]; while, in other instances, the front of the adventitious lobe is directed towards the corresponding surface of the original petal, thus [Symbol: () turned 90 degrees]. Whether these supernumerary petals are formed by chorisis or by enation cannot, with certainty, be determined without examining the early stages of development.