This condition accords precisely with the account of the development of the flowers in Pomaceæ as given by Payer, Caspary, and others, so that the flowers above described would owe their deficiency of the swollen receptacle to an arrest of development. M. Germain de Saint Pierre, among other malformations of the rose, presented to the Botanical Society of France in 1854[86] two specimens which are of special interest as relating to this contested point. In the one, the swollen portion beneath the flower was surmounted by five perfect leaves, as, indeed, is not infrequent in such malformations; here, then, the calyx could have had little or no share in the production of the swelling in question. In the other, the swollen portion was actually above the insertion of the sepals here represented by five perfect leaves.

Fig. 36.—Section through Apple blossom, showing detachment of calyx from ovaries, absence of dilated flower-stalk, &c.

Fig. 37.—Calyx detached from carpels in Apple.

On the other hand, M. Planchon's specimen of the Quince before alluded to, not to mention other instances, tends to show that the bases of the sepals do sometimes enter into the composition of the pome. And, indeed, in many of these cases it would be impossible to say where the axial or receptacular portion ended, and the foliar portion began. As both from normal organogeny as well as from unusual conformation contradictory inferences may be drawn, it would obviously be unsafe to attempt the explanation of the so-called calyx-tube in general from any particular instances; so far as Rosaceæ are concerned, there is so much variation in the relative position of calyx and carpels under ordinary circumstances, that it is no matter for surprise that similar diversities should exist in teratological cases. A similar remark will apply to Saxifragaceæ, Cucurbitaceæ, Myrtaceæ, Bruniaceæ, Rubiaceæ, and other families of like conformation.