891. Now both the solutions used are conductors, but the conduction in them is essentially connected with decomposition (858.) in a certain constant order, and therefore the appearance of the elements in certain places shows in what direction a current has passed when the solutions are thus employed. Moreover, we find that when they are used at opposite ends of the plates, as in the last two experiments (889. 890.), metallic contact being allowed at the other extremities, the currents are in opposite directions. We have evidently, therefore, the power of opposing the actions of the two fluids simultaneously to each other at the opposite ends of the plates, using each one as a conductor for the discharge of the current of electricity, which the other tends to generate; in fact, substituting them for metallic contact, and combining both experiments into one (fig. 76.). Under these circumstances, there is an opposition of forces: the fluid, which brings into play the stronger set of chemical affinities for the zinc, (being the dilute acid,) overcomes the force of the other, and determines the formation and direction of the electric current; not merely making that current pass through the weaker liquid, but actually reversing the tendency which the elements of the latter have in relation to the zinc and platina if not thus counteracted, and forcing them in the contrary direction to that they are inclined to follow, that its own current may have free course. If the dominant action at y be removed by making metallic contact there, then the liquid at x resumes its power; or if the metals be not brought into contact at y but the affinities of the solution there weakened, whilst those active x are strengthened, then the latter gains the ascendency, and the decompositions are produced in a contrary order.

892. Before drawing a final conclusion from this mutual dependence and state of the chemical affinities of two distant portions of acting fluids (916.), I will proceed to examine more minutely the various circumstances under which the re-action of the body suffering decomposition is rendered evident upon the action of the body, also undergoing decomposition, which produces the voltaic current.

893. The use of metallic contact in a single pair of plates, and the cause of its great superiority above contact made by other kinds of matter, become now very evident. When an amalgamated zinc plate is dipped into dilute sulphuric acid, the force of chemical affinity exerted between the metal and the fluid is not sufficiently powerful to cause sensible action at the surfaces of contact, and occasion the decomposition of water by the oxidation of the metal, although it is sufficient to produce such a condition of the electricity (or the power upon which chemical affinity depends) as would produce a current if there were a path open for it (916. 956.); and that current would complete the conditions necessary, under the circumstances, for the decomposition of the water.

894. Now the presence of a piece of platina touching both the zinc and the fluid to be decomposed, opens the path required for the electricity. Its direct communication with the zinc is effectual, far beyond any communication made between it and that metal, (i.e. between the platina and zinc,) by means of decomposable conducting bodies, or, in other words, electrolytes, as in the experiment already described (891.); because, when they are used, the chemical affinities between them and the zinc produce a contrary and opposing action to that which is influential in the dilute sulphuric acid; or if that action be but small, still the affinity of their component parts for each other has to be overcome, for they cannot conduct without suffering decomposition; and this decomposition is found experimentally to re-act back upon the forces which in the acid tend to produce the current (904. 910. &c.), and in numerous cases entirely to neutralize them. Where direct contact of the zinc and platina occurs, these obstructing forces are not brought into action, and therefore the production and the circulation of the electric current and the concomitant action of decomposition are then highly favoured.

895. It is evident, however, that one of these opposing actions may be dismissed, and yet an electrolyte be used for the purpose of completing the circuit between the zinc and platina immersed separately into the dilute acid; for if, in fig. 73, the platina wire be retained in metallic contact with the zinc plate a, at x, and a division of the platina be made elsewhere, as at s, then the solution of iodide placed there, being in contact with platina at both surfaces, exerts no chemical affinities for that metal; or if it does, they are equal on both sides. Its power, therefore, of forming a current in opposition to that dependent upon the action of the acid in the vessel c, is removed, and only its resistance to decomposition remains as the obstacle to be overcome by the affinities exerted in the dilute sulphuric acid.

896. This becomes the condition of a single pair of active plates where metallic contact is allowed. In such cases, only one set of opposing affinities are to be overcome by those which are dominant in the vessel c; whereas, when metallic contact is not allowed, two sets of opposing affinities must be conquered (894.).

897. It has been considered a difficult, and by some an impossible thing, to decompose bodies by the current from a single pair of plates, even when it was so powerful as to heat bars of metal red-hot, as in the case of Hare's calorimeter, arranged as a single voltaic circuit, or of Wollaston's powerful single pair of metals. This difficulty has arisen altogether from the antagonism of the chemical affinity engaged in producing the current with the chemical affinity to be overcome, and depends entirely upon their relative intensity; for when the sum of forces in one has a certain degree of superiority over the sum of forces in the other, the former gain the ascendency, determine the current, and overcome the latter so as to make the substance exerting them yield up its elements in perfect accordance, both as to direction and quantity, with the course of those which are exerting the most intense and dominant action.

898. Water has generally been the substance, the decomposition of which has been sought for as a chemical test of the passage of an electric current. But I now began to perceive a reason for its failure, and for a fact which I had observed long before (315. 316.) with regard to the iodide of potassium, namely, that bodies would differ in facility of decomposition by a given electric current, according to the condition and intensity of their ordinary chemical affinities. This reason appeared in their re-action upon the affinities tending to cause the current; and it appeared probable, that many substances might be found which could be decomposed by the current of a single pair of zinc and platina plates immersed in dilute sulphuric acid, although water resisted its action. I soon found this to be the case, and as the experiments offer new and beautiful proofs of the direct relation and opposition of the chemical affinities concerned in producing and in resisting the stream of electricity, I shall briefly describe them.

899. The arrangement of the apparatus was as in fig. 77. The vessel v contained dilute sulphuric acid; Z and P are the zinc and platina plates; a, b, and c are platina wires; the decompositions were effected at x, and occasionally, indeed generally, a galvanometer was introduced into the circuit at g: its place only is here given, the circle at g having no reference to the size of the instrument. Various arrangements were made at x, according to the kind of decomposition to be effected. If a drop of liquid was to be acted upon, the two ends were merely dipped into it; if a solution contained in the pores of paper was to be decomposed, one of the extremities was connected with a platina plate supporting the paper, whilst the other extremity rested on the paper, e, fig. 81: or sometimes, as with sulphate of soda, a plate of platina sustained two portions of paper, one of the ends of the wires resting upon each piece, c, fig. 86. The darts represent the direction of the electric current (667.).

900. Solution of iodide of potassium, in moistened paper, being placed at the interruption of the circuit at x, was readily decomposed. Iodine was evolved at the anode, and alkali at the cathode, of the decomposing body.