970. This apparatus was examined from time to time, and an electric current always found circulating through it, until twelve days had elapsed, during which the water in the second vessel had been constantly subject to its action. Notwithstanding this lengthened period, not the slightest appearance of a bubble upon either of the plates in that vessel occurred. From the results of the experiment, I conclude that a current had passed, but of so low an intensity as to fall beneath that degree at which the elements of water, unaided by any secondary force resulting from the capability of combination with the matter of the electrodes, or of the liquid surrounding them, separated from each other.

971. It may be supposed, that the oxygen and hydrogen had been evolved in such small quantities as to have entirely dissolved in the water, and finally to have escaped at the surface, or to have reunited into water. That the hydrogen can be so dissolved was shown in the first vessel; for after several days minute bubbles of gas gradually appeared upon a glass rod, inserted to retain the zinc and platina apart, and also upon the platina plate itself, and these were hydrogen. They resulted principally in this way:—notwithstanding the amalgamation of the zinc, the acid exerted a little direct action upon it, so that a small stream of hydrogen bubbles was continually rising from its surface; a little of this hydrogen gradually dissolved in the dilute acid, and was in part set free against the surfaces of the rod and the plate, according to the well-known action of such solid bodies in solutions of gases (623. &c.).

972. But if the gases had been evolved in the second vessel by the decomposition of water, and had tended to dissolve, still there would have been every reason to expect that a few bubbles should have appeared on the electrodes, especially on the negative one, if it were only because of its action as a nucleus on the solution supposed to be formed; but none appeared even after twelve days.

973. When a few drops only of nitric acid were added to the vessel A, fig. 84, then the results were altogether different. In less than five minutes bubbles of gas appeared on the plates P' and P" in the second vessel. To prove that this was the effect of the electric current (which by trial at c was found at the same time to be passing,) the connexion at c was broken, the plates P'P" cleared from bubbles and left in the acid of the vessel B, for fifteen minutes: during that time no bubbles appeared upon them; but on restoring the communication at c, a minute did not elapse before gas appeared in bubbles upon the plates. The proof, therefore, is most full and complete, that the current excited by dilute sulphuric acid with a little nitric acid in vessel A, has intensity enough to overcome the chemical affinity exerted between the oxygen and hydrogen of the water in the vessel B, whilst that excited by dilute sulphuric acid alone has not sufficient intensity.

974. On using a strong solution of caustic potassa in the vessel A, to excite the current, it was found by the decomposing effects at e, that the current passed. But it had not intensity enough to decompose the water in the vessel B; for though left for fourteen days, during the whole of which time the current was found to be passing, still not the slightest appearance of gas appeared on the plates P'P", nor any other signs of the water having suffered decomposition.

975. Sulphate of soda in solution was then experimented with, for the purpose of ascertaining with respect to it, whether a certain electrolytic intensity was also required for its decomposition in this state, in analogy with the result established with regard to water (974). The apparatus was arranged as in fig. 85; P and Z are the platina and zinc plates dipping into a solution of common salt; a and b are platina plates connected by wires of platina (except in the galvanometer g) with P and Z; c is a connecting wire of platina, the ends of which can be made to rest either on the plates a, b, or on the papers moistened in solutions which are placed upon them; so that the passage of the current without decomposition, or with one or two decompositions, was under ready command, as far as arrangement was concerned. In order to change the anodes and cathodes at the places of decomposition, the form of apparatus fig. 86, was occasionally adopted. Here only one platina plate, c, was used; both pieces of paper on which decomposition was to be effected were placed upon it, the wires from P and Z resting upon these pieces of paper, or upon the plate c, according as the current with or without decomposition of the solutions was required.

976. On placing solution of iodide of potassium in paper at one of the decomposing localities, and solution of sulphate of soda at the other, so that the electric current should pass through both at once, the solution of iodide was slowly decomposed, yielding iodine at the anode and alkali at the cathode; but the solution of sulphate of soda exhibited no signs of decomposition, neither acid nor alkali being evolved from it. On placing the wires so that the iodide alone was subject to the action of the current (900.), it was quickly and powerfully decomposed; but on arranging them so that the sulphate of soda alone was subject to action, it still refused to yield up its elements. Finally, the apparatus was so arranged under a wet bell-glass, that it could be left for twelve hours, the current passing during the whole time through a solution of sulphate of soda, retained in its place by only two thicknesses of bibulous litmus and turmeric paper. At the end of that time it was ascertained by the decomposition of iodide of potassium at the second place of action, that the current was passing and had passed for the twelve hours, and yet no trace of acid or alkali from the sulphate of soda appeared.

977. From these experiments it may, I think, be concluded, that a solution of sulphate of soda can conduct a current of electricity, which is unable to decompose the neutral salt present; that this salt in the state of solution, like water, requires a certain electrolytic intensity for its decomposition; and that the necessary intensity is much higher for this substance than for the iodide of potassium in a similar state of solution.

978. I then experimented on bodies rendered decomposable by fusion, and first on chloride of lead. The current was excited by dilute sulphuric acid without any nitric acid between zinc and platina plates, fig. 87, and was then made to traverse a little chloride of lead fused upon glass at a, a paper moistened in solution of iodide of potassium at b, and a galvanometer at g. The metallic terminations at a and b were of platina. Being thus arranged, the decomposition at b and the deflection at g showed that an electric current was passing, but there was no appearance of decomposition at a, not even after a metallic communication at b was established. The experiment was repeated several times, and I am led to conclude that in this case the current has not intensity sufficient to cause the decomposition of the chloride of lead; and further, that, like water (974.), fused chloride of lead can conduct an electric current having an intensity below that required to effect decomposition.

979. Chloride of silver was then placed at a, fig. 87, instead of chloride of lead. There was a very ready decomposition of the solution of iodide of potassium at b, and when metallic contact was made there, very considerable deflection of the galvanometer needle at g. Platina also appeared to be dissolved at the anode of the fused chloride at a, and there was every appearance of a decomposition having been effected there.