1034. When the ordinary voltaic battery is brought into action, its very activity produces certain effects, which re-act upon it, and cause serious deterioration of its power. These render it an exceedingly inconstant instrument as to the quantity of effect which it is capable of producing. They are already, in part, known and understood; but as their importance, and that of certain other coincident results, will be more evident by reference to the principles and experiments already stated and described, I have thought it would be useful, in this investigation of the voltaic pile, to notice them briefly here.

1035. When the battery is in action, it causes such substances to be formed and arranged in contact with the plates as very much weaken its power, or even tend to produce a counter current. They are considered by Sir Humphry Davy as sufficient to account for the phenomena of Ritter's secondary piles, and also for the effects observed by M.A. De la Rive with interposed platina plates[216].

1036. I have already referred to this consequence (1003.), as capable, in some cases, of lowering the force of the current to one-eighth or one-tenth of what it was at the first moment, and have met with instances in which its interference was very great. In an experiment in which one voltaic pair and one interposed platina plate were used with dilute sulphuric acid in the cells fig. 103, the wires of communication were so arranged, that the end of that marked 3 could be placed at pleasure upon paper moistened in the solution of iodide of potassium at x, or directly upon the platina plate there. If, after an interval during which the circuit had not been complete, the wire 3 were placed upon the paper, there was evidence of a current, decomposition ensued, and the galvanometer was affected. If the wire 3 were made to touch the metal of p, a comparatively strong sudden current was produced, affecting the galvanometer, but lasting only for a moment; the effect at the galvanometer ceased, and if the wire 3 were placed on the paper at x, no signs of decomposition occurred. On raising the wire 3, and breaking the circuit altogether for a while, the apparatus resumed its first power, requiring, however, from five to ten minutes for this purpose; and then, as before, on making contact between 3 and p, there was again a momentary current, and immediately all the effects apparently ceased.

1037. This effect I was ultimately able to refer to the state of the film of fluid in contact with the zinc plate in cell i. The acid of that film is instantly neutralized by the oxide formed; the oxidation of the zinc cannot, of course, go on with the same facility as before; and the chemical action being thus interrupted, the voltaic action diminishes with it. The time of the rest was required for the diffusion of the liquid, and its replacement by other acid. From the serious influence of this cause in experiments with single pairs of plates of different metals, in which I was at one time engaged, and the extreme care required to avoid it, I cannot help feeling a strong suspicion that it interferes more frequently and extensively than experimenters are aware of, and therefore direct their attention to it.

1038. In considering the effect in delicate experiments of this source of irregularity of action, in the voltaic apparatus, it must be remembered that it is only that very small portion of matter which is directly in contact with the oxidizable metal which has to be considered with reference to the change of its nature; and this portion is not very readily displaced from its position upon the surface of the metal (582. 605.), especially if that metal be rough and irregular. In illustration of this effect, I will quote a remarkable experiment. A burnished platina plate (569.) was put into hot strong sulphuric acid for an instant only: it was then put into distilled water, moved about in it, taken out, and wiped dry: it was put into a second portion of distilled water, moved about in it, and again wiped: it was put into a third portion of distilled water, in which it was moved about for nearly eight seconds; it was then, without wiping, put into a fourth portion of distilled water, where it was allowed to remain five minutes. The two latter portions of water were then tested for sulphuric acid; the third gave no sensible appearance of that substance, but the fourth gave indications which were not merely evident, but abundant for the circumstances under which it had been introduced. The result sufficiently shows with what difficulty that portion of the substance which is in contact with the metal leaves it; and as the contact of the fluid formed against the plate in the voltaic circuit must be as intimate and as perfect as possible, it is easy to see how quickly and greatly it must vary from the general fluid in the cells, and how influential in diminishing the force of the battery this effect must be.

1039. In the ordinary voltaic pile, the influence of this effect will occur in all variety of degrees. The extremities of a trough of twenty pairs of plates of Wollaston's construction were connected with the volta-electrometer, fig. 66. (711.), of the Seventh Series of these Researches, and after five minutes the number of bubbles of gas issuing from the extremity of the tube, in consequence of the decomposition of the water, noted. Without moving the plates, the acid between the copper and zinc was agitated by the introduction of a feather. The bubbles were immediately evolved more rapidly, above twice the number being produced in the same portion of time as before. In this instance it is very evident that agitation by a feather must have been a very imperfect mode of restoring the acid in the cells against the plates towards its first equal condition; and yet imperfect as the means were, they more than doubled the power of the battery. The first effect of a battery which is known to be so superior to the degree of action which the battery can sustain, is almost entirely due to the favourable condition of the acid in contact with the plates.

1040. A second cause of diminution in the force of the voltaic battery, consequent upon its own action, is that extraordinary state of the surfaces of the metals (969.) which was first described, I believe, by Ritter[217], to which he refers the powers of his secondary piles, and which has been so well experimented upon by Marianini, and also by A. De la Rive. If the apparatus, fig. 103. (1096.), be left in action for an hour or two, with the wire 3 in contact with the plate p, so as to allow a free passage for the current, then, though the contact be broken for ten or twelve minutes, still, upon its renewal, only a feeble current will pass, not at all equal in force to what might be expected. Further, if P^{1} and P^{2} be connected by a metal wire, a powerful momentary current will pass from P^{2} to P^{1} through the acid, and therefore in the reverse direction to that produced by the action of the zinc in the arrangement; and after this has happened, the general current can pass through the whole of the system as at first, but by its passage again restores the plates P^{2} and P^{1} into the former opposing condition. This, generally, is the fact described by Ritter, Marianini, and De la Rive. It has great opposing influence on the action of a pile, especially if the latter consist of but a small number of alternations, and has to pass its current through many interpositions. It varies with the solution in which the interposed plates are immersed, with the intensity of the current, the strength of the pile, the time of action, and especially with accidental discharges of the plates by inadvertent contacts or reversions of the plates during experiments, and must be carefully watched in every endeavour to trace the source, strength, and variations of the voltaic current. Its effect was avoided in the experiments already described (1036. &c.), by making contact between the plates P^{1} and P^{2} before the effect dependent upon the state of the solution in contact with the zinc plate was observed, and by other precautions.

1041. When an apparatus like fig. 98. (1017.) with several platina plates was used, being connected with a battery able to force a current through them, the power which they acquired, of producing a reversed current, was very considerable.

1042. Weak and exhausted charges should never be used at the same time with strong and fresh ones in the different cells of a trough, or the different troughs of a battery: the fluid in all the cells should be alike, else the plates in the weaker cells, in place of assisting, retard the passage of the electricity generated in, and transmitted across, the stronger cells. Each zinc plate so circumstanced has to be assisted in decomposing power before the whole current can pass between it and the liquid. So, that, if in a battery of fifty pairs of plates, ten of the cells contain a weaker charge than the others, it is as if ten decomposing plates were opposed to the transit of the current of forty pairs of generating plates (1031.). Hence a serious loss of force, and hence the reason why, if the ten pairs of plates were removed, the remaining forty pairs would be much more powerful than the whole fifty.

1043. Five similar troughs, of ten pairs of plates each, were prepared, four of them with a good uniform charge of acid, and the fifth with the partially neutralized acid of a used battery. Being arranged in right order, and connected with a volta-electrometer (711.), the whole fifty pairs of plates yielded 1.1 cubic inch of oxygen and hydrogen in one minute: but on moving one of the connecting wires so that only the four well-charged troughs should be included in the circuit, they produced with the same volta-electrometer 8.4 cubical inches of gas in the same time. Nearly seven-eighths of the power of the four troughs had been lost, therefore, by their association with the fifth trough.