1201. It is essential that the interior of the apparatus should be perfectly free from dust or small loose particles, for these very rapidly lower the charge and interfere on occasions when their presence and action would hardly be expected. To breathe on the interior of the apparatus and wipe it out quietly with a clean silk handkerchief, is an effectual way of removing them; but then the intrusion of other particles should be carefully guarded against, and a dusty atmosphere should for this and several other reasons be avoided.
1202. The shell-lac stem requires occasionally to be well-wiped, to remove, in the first instance, the film of wax and adhering matter which is upon it; and afterwards to displace dirt and dust which will gradually attach to it in the course of experiments. I have found much to depend upon this precaution, and a silk handkerchief is the best wiper.
1203. But wiping and some other circumstances tend to give a charge to the surface of the shell-lac stem. This should be removed, for, if allowed to remain, it very seriously affects the degree of charge given to the carrier ball by the apparatus (1232.). This condition of the stem is best observed by discharging the apparatus, applying the carrier ball to the stem, touching it with the finger, insulating and removing it, and examining whether it has received any charge (by induction) from the stem; if it has, the stem itself is in a charged state. The best method of removing the charge I have found to be, to cover the finger with a single fold of a silk handkerchief, and breathing on the stem, to wipe it immediately after with the finger; the ball B and its connected wire, &c. being at the same time uninsulated: the wiping place of the silk must not be changed; it then becomes sufficiently damp not to excite the stem, and is yet dry enough to leave it in a clean and excellent insulating condition. If the air be dusty, it will be found that a single charge of the apparatus will bring on an electric state of the outside of the stem, in consequence of the carrying power of the particles of dust; whereas in the morning, and in a room which has been left quiet, several experiments can be made in succession without the stem assuming the least degree of charge.
1204. Experiments should not be made by candle or lamp light except with much care, for flames have great and yet unsteady powers of affecting and dissipating electrical charges.
1205. As a final observation on the state of the apparatus, they should retain their charges well and uniformly, and alike for both, and at the same time allow of a perfect and instantaneous discharge, giving afterwards no charge to the carrier ball, whatever part of the ball B it may be applied to (1218.).
1206. With respect to the balance electrometer, all the precautions that need be mentioned, are, that the carrier ball is to be preserved during the first part of an experiment in its electrified state, the loss of electricity which would follow upon its discharge being avoided; and that in introducing it into the electrometer through the hole in the glass plate above, care should be taken that it do not touch, or even come near to, the edge of the glass.
1207. When the whole charge in one apparatus is divided between the two, the gradual fall, apparently from dissipation, in the apparatus which has received the half charge is greater than in the one originally charged. This is due to a peculiar effect to be described hereafter (1250. 1251.), the interfering influence of which may be avoided to a great extent by going through the steps of the process regularly and quickly; therefore, after the original charge has been measured, in app. i. for instance, i. and ii. are to be symmetrically joined by their balls B, the carrier touching one of these balls at the same time; it is first to be removed, and then the apparatus separated from each other; app. ii. is next quickly to be measured by the carrier, then app. i.; lastly, ii. is to be discharged, and the discharged carrier applied to it to ascertain whether any residual effect is present (1205.), and app. i. being discharged is also to be examined in the same manner and for the same purpose.
1208. The following is an example of the division of a charge by the two apparatus, air being the dielectric in both of them. The observations are set down one under the other in the order in which they were taken, the left-hand numbers representing the observations made on app. i., and the right-hand numbers those on app. ii. App. i. is that which was originally charged, and after two measurements, the charge was divided with app. ii.
| App. i. | App. ii. | |
| Balls 160° | ||
| . . . . | 0° | |
| 254° | . . . . | |
| 250 | . . . . | |
| divided and instantly taken | ||
| . . . . | 122 | |
| 124 | . . . . | |
| 1 | . . . . | after being discharged. |
| . . . . | 2 after being discharged. |
1209. Without endeavouring to allow for the loss which must have been gradually going on during the time of the experiment, let us observe the results of the numbers as they stand. As 1° remained in app. i. in an undischargeable state, 249° may be taken as the utmost amount of the transferable or divisible charge, the half of which is 124°.5. As app. ii. was free of charge in the first instance, and immediately after the division was found with 122°, this amount at least may be taken as what it had received. On the other hand 124° minus 1°, or 123°, may be taken as the half of the transferable charge retained by app. i. Now these do not differ much from each other, or from 124°.5, the half of the full amount of transferable charge; and when the gradual loss of charge evident in the difference between 254° and 250° of app. i. is also taken into account, there is every reason to admit the result as showing an equal division of charge, unattended by any disappearance of power except that due to dissipation.