1236. This effect was at once distinguished from that produced by the excited stem acting in curved lines of induction (1203. 1232.), by the circumstance that all the returned electricity could be perfectly and instantly discharged. It appeared to depend upon the shell-lac within, and to be, in some way, due to electricity evolved from it in consequence of a previous condition into which it had been brought by the charge of the metallic coatings or balls.

1237. To examine this state more accurately, the apparatus, with the hemispherical cup of shell-lac in it, was charged for about forty-five minutes to above 600° with positive electricity at the balls h and B. (fig. 104.) above and within. It was then discharged, opened, the shell-lac taken out, and its state examined; this was done by bringing the carrier ball near the shell-lac, uninsulating it, insulating it, and then observing what charge it had acquired. As it would be a charge by induction, the state of the ball would indicate the opposite state of electricity in that surface of the shell-lac which had produced it. At first the lac appeared quite free from any charge; but gradually its two surfaces assumed opposite states of electricity, the concave surface, which had been next the inner and positive ball; assuming a positive state, and the convex surface, which had been in contact with the negative coating, acquiring a negative state; these states gradually increased in intensity for some time.

1238. As the return action was evidently greatest instantly after the discharge, I again put the apparatus together, and charged it for fifteen minutes as before, the inner ball positively. I then discharged it, instantly removing the upper hemisphere with the interior ball, and, leaving the shell-lac cup in the lower uninsulated hemisphere, examined its inner surface by the carrier ball as before (1237.). In this way I found the surface of the shell-lac actually negative, or in the reverse state to the ball which had been in it; this state quickly disappeared, and was succeeded by a positive condition, gradually increasing in intensity for some time, in the same manner as before. The first negative condition of the surface opposite the positive charging ball is a natural consequence of the state of things, the charging ball being in contact with the shell-lac only in a few points. It does not interfere with the general result and peculiar state now under consideration, except that it assists in illustrating in a very marked manner the ultimate assumption by the surfaces of the shell-lac of an electrified condition, similar to that of the metallic surfaces opposed to or against them.

1239. Glass was then examined with respect to its power of assuming this peculiar state. I had a thick flint-glass hemispherical cup formed, which would fit easily into the space o of the lower hemisphere (1188. 1189.); it had been heated and varnished with a solution of shell-lac in alcohol, for the purpose of destroying the conducting power of the vitreous surface (1254.). Being then well-warmed and experimented with, I found it could also assume the same state, but not apparently to the same degree, the return action amounting in different cases to quantities from 6° to 18°.

1240. Spermaceti experimented with in the same manner gave striking results. When the original charge had been sustained for fifteen or twenty minutes at about 500°, the return charge was equal to 95° or 100°, and was about fourteen minutes arriving at the maximum effect. A charge continued for not more than two or three seconds was here succeeded by a return charge of 50° or 60°. The observations formerly made (1234.) held good with this substance. Spermaceti, though it will insulate a low charge for some time, is a better conductor than shell-lac, glass, and sulphur; and this conducting power is connected with the readiness with which it exhibits the particular effect under consideration.

1241. Sulphur.—I was anxious to obtain the amount of effect with this substance, first, because it is an excellent insulator, and in that respect would illustrate the relation of the effect to the degree of conducting power possessed by the dielectric (1247.); and in the next place, that I might obtain that body giving the smallest degree of the effect now under consideration for the investigation of the question of specific inductive capacity (1277.).

1242. With a good hemispherical cup of sulphur cast solid and sound, I obtained the return charge, but only to an amount of 17° or 18°. Thus glass and sulphur, which are bodily very bad conductors of electricity, and indeed almost perfect insulators, gave very little of this return charge.

1243. I tried the same experiment having air only in the inductive apparatus. After a continued high charge for some time I could obtain a little effect of return action, but it was ultimately traced to the shell-lac of the stem.

1244. I sought to produce something like this state with one electric power and without induction; for upon the theory of an electric fluid or fluids, that did not seem impossible, and then I should have obtained an absolute charge (1169. 1177.), or something equivalent to it. In this I could not succeed. I excited the outside of a cylinder of shell-lac very highly for some time, and then quickly discharging it (1203.), waited and watched whether any return charge would appear, but such was not the case. This is another fact in favour of the inseparability of the two electric forces (1177.), and another argument for the view that induction and its concomitant phenomena depend upon a polarity of the particles of matter.

1245. Although inclined at first to refer these effects to a peculiar masked condition of a certain portion of the forces, I think I have since correctly traced them to known principles of electrical action. The effects appear to be due to an actual penetration of the charge to some distance within the electric, at each of its two surfaces, by what we call conduction; so that, to use the ordinary phrase, the electric forces sustaining the induction are not upon the metallic surfaces only, but upon and within the dielectric also, extending to a greater or smaller depth from the metal linings. Let c (fig. 113.) be the section of a plate of any dielectric, a and b being the metallic coatings; let b be uninsulated, and a be charged positively; after ten or fifteen minutes, if a and b be discharged, insulated, and immediately examined, no electricity will appear in them; but in a short time, upon a second examination, they will appear charged in the same way, though not to the same degree, as they were at first. Now suppose that a portion of the positive force has, under the coercing influence of all the forces concerned, penetrated the dielectric and taken up its place at the line p, a corresponding portion of the negative force having also assumed its position at the line n; that in fact the electric at these two parts has become charged positive and negative; then it is clear that the induction of these two forces will be much greater one towards the other, and less in an external direction, now that they are at the small distance np from each other, than when they were at the larger interval ab. Then let a and b be discharged; the discharge destroys or neutralizes all external induction, and the coatings are therefore found by the carrier ball unelectrified; but it also removes almost the whole of the forces by which the electric charge was driven into the dielectric, and though probably a part of that charge goes forward in its passage and terminates in what we call discharge, the greater portion returns on its course to the surfaces of c, and consequently to the conductors a and b, and constitutes the recharge observed.