1360. The conditions requisite for the production of an electric spark in its simplest form are well-known. An insulating dielectric must be interposed between two conducting surfaces in opposite states of electricity, and then if the actions be continually increased in strength, or otherwise favoured, either by exalting the electric state of the two conductors, or bringing them nearer to each other, or diminishing the density of the dielectric, a spark at last appears, and the two forces are for the time annihilated, for discharge has occurred.
1361. The conductors (which may be considered as the termini of the inductive action) are in ordinary cases most generally metals, whilst the dielectrics usually employed are common air and glass. In my view of induction, however, every dielectric becomes of importance, for as the results are considered essentially dependent on these bodies, it was to be expected that differences of action never before suspected would be evident upon close examination, and so at once give fresh confirmation of the theory, and open new doors of discovery into the extensive and varied fields of our science. This hope was especially entertained with respect to the gases, because of their high degree of insulation, their uniformity in physical condition, and great difference in chemical properties.
1362. All the effects prior to the discharge are inductive; and the degree of tension which it is necessary to attain before the spark passes is therefore, in the examination I am now making of the new view of induction, a very important point. It is the limit of the influence which the dielectric exerts in resisting discharge; it is a measure, consequently, of the conservative power of the dielectric, which in its turn may be considered as becoming a measure, and therefore a representative of the intensity of the electric forces in activity.
1363. Many philosophers have examined the circumstances of this limiting action in air, but, as far as I know, none have come near Mr. Harris as to the accuracy with, and the extent to, which he has carried on his investigations[264]. Some of his results I must very briefly notice, premising that they are all obtained with the use of air as the dielectric between the conducting surfaces.
1364. First as to the distance between the two balls used, or in other words, the thickness of the dielectric across which the induction was sustained. The quantity of electricity, measured by a unit jar, or otherwise on the same principle with the unit jar, in the charged or inductive ball, necessary to produce spark discharge, was found to vary exactly with the distance between the balls, or between the discharging points, and that under very varied and exact forms of experiment[265].
1365. Then with respect to variation in the pressure or density of the air. The quantities of electricity required to produce discharge across a constant interval varied exactly with variations of the density; the quantity of electricity and density of the air being in the same simple ratio. Or, if the quantity was retained the same, whilst the interval and density of the air were varied, then these were found in the inverse simple ratio of each other, the same quantity passing across twice the distance with air rarefied to one-half[266].
1366. It must be remembered that these effects take place without any variation of the inductive force by condensation or rarefaction of the air. That force remains the same in air[267], and in all gases (1284. 1292.), whatever their rarefaction may be.
1367. Variation of the temperature of the air produced no variation of the quantity of electricity required to cause discharge across a given interval[268].
Such are the general results, which I have occasion for at present, obtained by Mr. Harris, and they appear to me to be unexceptionable.
1368. In the theory of induction founded upon a molecular action of the dielectric, we have to look to the state of that body principally for the cause and determination of the above effects. Whilst the induction continues, it is assumed that the particles of the dielectric are in a certain polarized state, the tension of this state rising higher in each particle as the induction is raised to a higher degree, either by approximation of the inducing surfaces, variation of form, increase of the original force, or other means; until at last, the tension of the particles having reached the utmost degree which they can sustain without subversion of the whole arrangement, discharge immediately after takes place.