118. All these results show that the power of inducing electric currents is circumferentially exerted by a magnetic resultant or axis of power, just as circumferential magnetism is dependent upon and is exhibited by an electric current.

119. The experiments described combine to prove that when a piece of metal (and the same may be true of all conducting matter (213.) ) is passed either before a single pole, or between the opposite poles of a magnet, or near electro-magnetic poles, whether ferruginous or not, electrical currents are produced across the metal transverse to the direction of motion; and which therefore, in Arago's experiments, will approximate towards the direction of radii. If a single wire be moved like the spoke of a wheel near a magnetic pole, a current of electricity is determined through it from one end towards the other. If a wheel be imagined, constructed of a great number of these radii, and this revolved near the pole, in the manner of the copper disc (85.), each radius will have a current produced in it as it passes by the pole. If the radii be supposed to be in contact laterally, a copper disc results, in which the directions of the currents will be generally the same, being modified only by the coaction which can take place between the particles, now that they are in metallic contact.

120. Now that the existence of these currents is known, Arago's phenomena may be accounted for without considering them as due to the formation in the copper, of a pole of the opposite kind to that approximated, surrounded by a diffuse polarity of the same kind (82.); neither is it essential that the plate should acquire and lose its state in a finite time; nor on the other hand does it seem necessary that any repulsive force should be admitted as the cause of the rotation (82.).

121. The effect is precisely of the same kind as the electromagnetic rotations which I had the good fortune to discover some years ago[14]. According to the experiments then made which have since been abundantly confirmed, if a wire (PN fig. 26.) be connected with the positive and negative ends of a voltaic buttery, so that the positive electricity shall pass from P to N, and a marked magnetic pole N be placed near the wire between it and the spectator, the pole will move in a direction tangential to the wire, i.e. towards the right, and the wire will move tangentially towards the left, according to the directions of the arrows. This is exactly what takes place in the rotation of a plate beneath a magnetic pole; for let N (fig. 27.) be a marked pole above the circular plate, the latter being rotated in the direction of the arrow: immediately currents of positive electricity set from the central parts in the general direction of the radii by the pole to the parts of the circumference a on the other side of that pole (99. 119.), and are therefore exactly in the same relation to it as the current in the wire (PN, fig. 26.), and therefore the pole in the same manner moves to the right hand.

122. If the rotation of the disc be reversed, the electric currents are reversed (91.), and the pole therefore moves to the left hand. If the contrary pole be employed, the effects are the same, i.e. in the same direction, because currents of electricity, the reverse of those described, are produced, and by reversing both poles and currents, the visible effects remain unchanged. In whatever position the axis of the magnet be placed, provided the same pole be applied to the same side of the plate, the electric current produced is in the same direction, in consistency with the law already stated (114, &c.); and thus every circumstance regarding the direction of the motion may be explained.

123. These currents are discharged or return in the parts of the plate on each side of and more distant from the place of the pole, where, of course, the magnetic induction is weaker; and when the collectors are applied, and a current of electricity is carried away to the galvanometer (88.), the deflection there is merely a repetition, by the same current or part of it, of the effect of rotation in the magnet over the plate itself.

124. It is under the point of view just put forth that I have ventured to say it is not necessary that the plate should acquire and lose its state in a finite time (120.); for if it were possible for the current to be fully developed the instant before it arrived at its state of nearest approximation to the vertical pole of the magnet, instead of opposite to or a little beyond it, still the relative motion of the pole and plate would be the same, the resulting force being in fact tangential instead of direct.

125. But it is possible (though not necessary for the rotation) that time may be required for the development of the maximum current in the plate, in which case the resultant of all the forces would be in advance of the magnet when the plate is rotated, or in the rear of the magnet when the latter is rotated, and many of the effects with pure electro-magnetic poles tend to prove this is the case. Then, the tangential force may be resolved into two others, one parallel to the plane of rotation, and the other perpendicular to it; the former would be the force exerted in making the plate revolve with the magnet, or the magnet with the plate; the latter would be a repulsive force, and is probably that, the effects of which M. Arago has also discovered (82.).

126. The extraordinary circumstance accompanying this action, which has seemed so inexplicable, namely, the cessation of all phenomena when the magnet and metal are brought to rest, now receives a full explanation (82.); for then the electrical currents which cause the motion cease altogether.

127. All the effects of solution of metallic continuity, and the consequent diminution of power described by Messrs. Babbage and Herschel[15], now receive their natural explanation, as well also as the resumption of power when the cuts were filled up by metallic substances, which, though conductors of electricity, were themselves very deficient in the power of influencing magnets. And new modes of cutting the plate may be devised, which shall almost entirely destroy its power. Thus, if a copper plate (81.) be cut through at about a fifth or sixth of its diameter from the edge, so as to separate a ring from it, and this ring be again fastened on, but with a thickness of paper intervening (fig. 29.), and if Arago's experiment be made with this compound plate so adjusted that the section shall continually travel opposite the pole, it is evident that the magnetic currents will be greatly interfered with, and the plate probably lose much of its effect[16].