1402. Here for the present I must leave this part of the subject, which had for its object only to observe how far gases agreed or differed as to their power of retaining a charge on bodies acting by induction through them. All the results conspire to show that Induction is an action of contiguous molecules (1295. &c.); but besides confirming this, the first principle placed for proof in the present inquiry, they greatly assist in developing the specific properties of each gaseous dielectric, at the same time showing that further and extensive experimental investigation is necessary, and holding out the promise of new discovery as the reward of the labour required.
* * * * *
1403. When we pass from the consideration of dielectrics like the gases to that of bodies having the liquid and solid condition, then our reasonings in the present state of the subject assume much more of the character of mere supposition. Still I do not perceive anything adverse to the theory, in the phenomena which such bodies present. If we take three insulating dielectrics, as air, oil of turpentine, and shell-lac, and use the same balls or conductors at the same intervals in these three substances, increasing the intensity of the induction until discharge take place, we shall find that it must be raised much higher in the fluid than for the gas, and higher still in the solid than for the fluid. Nor is this inconsistent with the theory; for with the liquid, though its molecules are free to move almost as easily as those of the gas, there are many more particles introduced into the given interval; and such is also the case when the solid body is employed. Besides that with the solid, the cohesive force of the body used will produce some effect; for though the production of the polarized states in the particle of a solid may not be obstructed, but, on the contrary, may in some cases be even favoured (1164. 1344.) by its solidity or other circumstances, yet solidity may well exert an influence on the point of final subversion, (just as it prevents discharge in an electrolyte,) and so enable inductive intensity to rise to a much higher degree.
1404. In the cases of solids and liquids too, bodies may, and most probably do, possess specific differences as to their ability of assuming the polarized state, and also as to the extent to which that polarity must rise before discharge occurs. An analogous difference exists in the specific inductive capacities already pointed out in a few substances (1278.) in the last paper. Such a difference might even account for the various degrees of insulating and conducting power possessed by different bodies, and, if it should be found to exist, would add further strength to the argument in favour of the molecular theory of inductive action.
* * * * *
1405. Having considered these various cases of sustained insulation in non-conducting dielectrics up to the highest point which they can attain, we find that they terminate at last in disruptive discharge; the peculiar condition of the molecules of the dielectric which was necessary to the continuous induction, being equally essential to the occurrence of that effect which closes all the phenomena. This discharge is not only in its appearance and condition different to the former modes by which the lowering of the powers was effected (1320. 1343.), but, whilst really the same in principle, varies much from itself in certain characters, and thus presents us with the forms of spark, brush, and glow (1359.). I will first consider the spark, limiting it for the present to the case of discharge between two oppositely electrified conducting surfaces.
The electric spark or flash.
1406. The spark is consequent upon a discharge or lowering of the polarized inductive state of many dielectric particles, by a particular action of a few of the particles occupying a very small and limited space; all the previously polarized particles returning to their first or normal condition in the inverse order in which they left it, and uniting their powers meanwhile to produce, or rather to continue, (1417.—1436.) the discharge effect in the place where the subversion of force first occurred. My impression is, that the few particles situated where discharge occurs are not merely pushed apart, but assume a peculiar state, a highly exulted condition for the time, i.e. have thrown upon them all the surrounding forces in succession, and rising up to a proportionate intensity of condition, perhaps equal to that of chemically combining atoms, discharge the powers, possibly in the same manner as they do theirs, by some operation at present unknown to us; and so the end of the whole. The ultimate effect is exactly as if a metallic wire had been put into the place of the discharging particles; and it does not seem impossible that the principles of action in both cases, may, hereafter, prove to be the same.
1407. The path of the spark, or of the discharge, depends on the degree of tension acquired by the particles in the line of discharge, circumstances, which in every common case are very evident and by the theory easy to understand, rendering it higher in them than in their neighbours, and, by exalting them first to the requisite condition, causing them to determine the course of the discharge. Hence the selection of the path, and the solution of the wonder which Harris has so well described[274] as existing under the old theory. All is prepared amongst the molecules beforehand, by the prior induction, for the path either of the electric spark or of lightning itself.