1435. In addition to this effect, it has been shown, that, the act of discharge having once commenced, the whole operation, like a case of unstable equilibrium, is hastened to a conclusion (1370. 1418.), the rest of the act being facilitated in its occurrence, and other electricity than that which caused the first necessary tension hurrying to the spot. When, therefore, disruptive discharge has once commenced at the root of a brush, the electric force which has been accumulating in the conductor attached to the rod, finds a more ready discharge there than elsewhere, and will at once follow the course marked out as it were for it, thus leaving the conductor in a partially discharged state, and the air about the end of the wire in a charged condition; and the time necessary for restoring the full charge of the conductor, and the dispersion of the charged air in a greater or smaller degree, by the joint forces of repulsion from the conductor and attraction towards the walls of the room, to which its inductive action is directed, is just that time which forms the interval between brush and brush (1420. 1427. 1431. 1447.).
1436. The words of this description are long, but there is nothing in the act or the forces on which it depends to prevent the discharge being instantaneous, as far as we can estimate and measure it. The consideration of time is, however, important in several points of view (1418.), and in reference to disruptive discharge, it seemed from theory far more probable that it might be detected in a brush than in a spark; for in a brush, the particles in the line through which the discharge passes are in very different states as to intensity, and the discharge is already complete in its act at the root of the brush, before the particles at the extremity of the ramifications have yet attained their maximum intensity.
1437. I consider brush discharge as probably a successive effect in this way. Discharge begins at the root (1426. 1553.), and, extending itself in succession to all parts of the single brush, continues to go on at the root and the previously formed parts until the whole brush is complete; then, by the fall in intensity and power at the conductor, it ceases at once in all parts, to be renewed, when that power has risen again to a sufficient degree. But in a spark, the particles in the line of discharge being, from the circumstances, nearly alike in their intensity of polarization, suffer discharge so nearly at the same moment as to make the time quite insensible to us.
1438. Mr. Wheatstone has already made experiments which fully illustrate this point. He found that the brush generally had a sensible duration, but that with his highest capabilities he could not detect any such effect in the spark[284]. I repeated his experiment on the brush, though with more imperfect means, to ascertain whether I could distinguish a longer duration in the stem or root of the brush than in the extremities, and the appearances were such as to make me think an effect of this kind was produced.
1439. That the discharge breaks into several ramifications, and by them passes through portions of air alike, or nearly alike, as to polarization and the degree of tension the particles there have acquired, is a very natural result of the previous state of things, and rather to be expected than that the discharge should continue to go straight out into space in a single line amongst those particles which, being at a distance from the end of the rod, are in a lower state of tension than those which are near: and whilst we cannot but conclude, that those parts where the branches of a single brush appear, are more favourably circumstanced for discharge than the darker parts between the ramifications, we may also conclude, that in those parts where the light of concomitant discharge is equal, there the circumstances are nearly equal also. The single successive brushes are by no means of the same particular shape even when they are observed without displacement of the rod or surrounding objects (1427. 1433.), and the successive discharges may be considered as taking place into the mass of air around, through different roads at each brush, according as minute circumstances, such as dust, &c. (1391. 1392.), may have favoured the course by one set of particles rather than another.
1440. Brush discharge does not essentially require any current of the medium in which the brush appears: the current almost always occurs, but is a consequence of the brush, and will be considered hereafter (1562-1610.). On holding a blunt point positively charged towards uninsulated water, a star or glow appeared on the point, a current of air passed from it, and the surface of the water was depressed; but on bringing the point so near that sonorous brushes passed, then the current of air instantly ceased, and the surface of the water became level.
1441. The discharge by a brush is not to all the particles of air that are near the electrified conductor from which the brush issues; only those parts where the ramifications pass are electrified: the air in the central dark parts between them receives no charge, and, in fact, at the time of discharge, has its electric and inductive tension considerably lowered. For consider fig. 128 to represent a single positive brush;—the induction before the discharge is from the end of the rod outwards, in diverging lines towards the distant conductors, as the walls of the room, &c., and a particle at a has polarity of a certain degree of tension, and tends with a certain force to become charged; but at the moment of discharge, the air in the ramifications b and d, acquiring also a positive state, opposes its influence to that of the positive conductor on a, and the tension of the particle at a is therefore diminished rather than increased. The charged particles at b and d are now inductive bodies, but their lines of inductive action are still outwards towards the walls of the room; the direction of the polarity and the tendency of other particles to charge from these, being governed by, or in conformity with, these lines of force.
1442. The particles that are charged are probably very highly charged, but, the medium being a non-conductor, they cannot communicate that state to their neighbours. They travel, therefore, under the influence of the repulsive and attractive forces, from the charged conductor towards the nearest uninsulated conductor, or the nearest body in a different state to themselves, just as charged particles of dust would travel, and are then discharged; each particle acting, in its course, as a centre of inductive force upon any bodies near which it may come. The travelling of these charged particles when they are numerous, causes wind and currents, but these will come into consideration under carrying discharge (1319. 1562. &c.).
1443. When air is said to be electrified, and it frequently assumes this state near electrical machines, it consists, according to my view, of a mixture of electrified and unelectrified particles, the latter being in very large proportion to the former. When we gather electricity from air, by a flame or by wires, it is either by the actual discharge of these particles, or by effects dependent on their inductive action, a case of either kind being produceable at pleasure. That the law of equality between the two forces or forms of force in inductive action is as strictly preserved in these as in other cases, is fully shown by the fact, formerly stated (1173. 1174.), that, however strongly air in a vessel might be charged positively, there was an exactly equal amount of negative force on the inner surface of the vessel itself, for no residual portion of either the one or the other electricity could be obtained.
1444. I have nowhere said, nor does it follow, that the air is charged only where the luminous brush appears. The charging may extend beyond those parts which are visible, i.e. particles to the right or left of the lines of light may receive electricity, the parts which are luminous being so only because much electricity is passing by them to other parts (1437.); just as in a spark discharge the light is greater as more electricity passes, though it has no necessary relation to the quantity required to commence discharge (1370. 1420.). Hence the form we see in a brush may by no means represent the whole quantity of air electrified; for an invisible portion, clothing the visible form to a certain depth, may, at the same time, receive its charge (1552.).