1572. The analogy between the action of solid conducting carrying particles and that of the charged particles of fluid insulating substances, acting as dielectrics, is very evident and simple; but in the latter case the result is, necessarily, currents in the mobile media. Particles are brought by inductric action into a polar state; and the latter, after rising to a certain tension (1370.), is followed by the communication of a part of the force originally on the conductor; the particles consequently become charged, and then, under the joint influence of the repellent and attractive forces, are urged towards a discharging place, or to that spot where these inductric forces are most easily compensated by the contrary inducteous forces.
1573. Why a point should be so exceedingly favourable to the production of currents in a fluid insulating dielectric, as air, is very evident. It is at the extremity of the point that the intensity necessary to charge the air is first acquired (1374.); it is from thence that the charged particle recedes; and the mechanical force which it impresses on the air to form a current is in every way favoured by the shape and position of the rod, of which the point forms the termination. At the same time, the point, having become the origin of an active mechanical force, does, by the very act of causing that force, namely, by discharge, prevent any other part of the rod from acquiring the same necessary condition, and so preserves and sustains its own predominance.
1574. The very varied and beautiful phenomena produced by sheltering or enclosing the point, illustrate the production of the current exceedingly well, and justify the same conclusions; it being remembered that in such cases the effect upon the discharge is of two kinds. For the current may be interfered with by stopping the access of fresh uncharged air, or retarding the removal of that which has been charged, as when a point is electrified in a tube of insulating matter closed at one extremity; or the electric condition of the point itself may be altered by the relation of other parts in its neighbourhood, also rendered electric, as when the point is in a metal tube, by the metal itself, or when it is in the glass tube, by a similar action of the charged parts of the glass, or even by the surrounding air which has been charged, and which cannot escape.
1575. Whenever it is intended to observe such inductive phenomena in a fluid dielectric as have a direct relation to, and dependence upon, the fluidity of the medium, such, for instance, as discharge from points, or attractions and repulsions, &c., then the mass of the fluid should be great, and in such proportion to the distance between the inductric and inducteous surfaces as to include all the lines of inductive force (1369.) between them; otherwise, the effects of currents, attraction, &c., which are the resultants of all these forces, cannot be obtained. The phenomena, which occur in the open air, or in the middle of a globe filled with oil of turpentine, will not take place in the same media if confined in tubes of glass, shell-lac, sulphur, or other such substances, though they be excellent insulating dielectrics; nor can they be expected: for in such cases, the polar forces, instead of being all dispersed amongst fluid particles, which tend to move under their influence, are now associated in many parts with particles that, notwithstanding their tendency to motion, are constrained by their solidity to remain quiescent.
1576. The varied circumstances under which, with conductors differently formed and constituted, currents can occur, all illustrate the same simplicity of production. A ball, if the intensity be raised sufficiently on its surface, and that intensity be greatest on a part consistent with the production of a current of air up to and off from it, will produce the effect like a point (1537); such is the case whenever the glow occurs upon a ball, the current being essential to that phenomenon. If as large a sphere as can well be employed with the production of glow be used, the glow will appear at the place where the current leaves the ball, and that will be the part directly opposite to the connection of the ball and rod which supports it; but by increasing the tension elsewhere, so as to raise it above the tension upon that spot, which can easily be effected inductively, then the place of the glow and the direction of the current will also change, and pass to that spot which for the time is most favourable for their production (1591.).
1577. For instance, approaching the hand towards the ball will tend to cause brush (1539.), but by increasing the supply of electricity the condition of glow may be preserved; then on moving the hand about from side to side the position of the glow will very evidently move with it.
1578. A point brought towards a glowing ball would at twelve or fourteen inches distance make the glow break into brush, but when still nearer, glow was reproduced, probably dependent upon the discharge of wind or air passing from the point to the ball, and this glow was very obedient to the motion of the point, following it in every direction.
1579. Even a current of wind could affect the place of the glow; for a varnished glass tube being directed sideways towards the ball, air was sometimes blown through it at the ball and sometimes not. In the former case, the place of the glow was changed a little, as if it were blown away by the current, and this is just the result which might have been anticipated. All these effects illustrate beautifully the general causes and relations, both of the glow and the current of air accompanying it (1574.).
1580. Flame facilitates the production of a current in the dielectric surrounding it. Thus, if a ball which would not occasion a current in the air have a flame, whether large or small, formed on its surface, the current is produced with the greatest ease; but not the least difficulty can occur in comprehending the effective action of the flame in this case, if its relation, as part of the surrounding dielectric, to the electrified ball, be but for a moment considered (1375. 1380.).
1581. Conducting fluid terminations, instead of rigid points, illustrate in a very beautiful manner the formation of the currents, with their effects and influence in exalting the conditions under which they were commenced. Let the rounded end of a brass rod, 0.3 of an inch or thereabouts in diameter, point downwards in free air; let it be amalgamated, and have a drop of mercury suspended from it; and then let it be powerfully electrized. The mercury will present the phenomenon of glow; a current of air will rush along the rod, and set off from the mercury directly downwards; and the form of the metallic drop will be slightly affected, the convexity at a small part near the middle and lower part becoming greater, whilst it diminishes all round at places a little removed from this spot. The change is from the form of a (fig. 135.) to that of b, and is due almost, if not entirely, to the mechanical force of the current of air sweeping over its surface.