* * * * *

1658. Having arrived at this point in the consideration of the current and in the endeavour to apply its phenomena as tests of the truth or fallacy of the theory of induction which I have ventured to set forth, I am now very much tempted to indulge in a few speculations respecting its lateral action and its possible connexion with the transverse condition of the lines of ordinary induction (1165, 1304.)[329]. I have long sought and still seek for an effect or condition which shall be to statical electricity what magnetic force is to current electricity (1411.); for as the lines of discharge are associated with a certain transverse effect, so it appeared to me impossible but that the lines of tension or of inductive action, which of necessity precede that discharge, should also have their correspondent transverse condition or effect (951.).

1659. According to the beautiful theory of Ampère, the transverse force of a current may be represented by its attraction for a similar current and its repulsion of a contrary current. May not then the equivalent transverse force of static electricity be represented by that lateral tension or repulsion which the lines of inductive action appear to possess (1304.)? Then again, when current or discharge occurs between two bodies, previously under inductrical relations to each other, the lines of inductive force will weaken and fade away, and, as their lateral repulsive tension diminishes, will contract and ultimately disappear in the line of discharge. May not this be an effect identical with the attractions of similar currents? i.e. may not the passage of static electricity into current electricity, and that of the lateral tension of the lines of inductive force into the lateral attraction of lines of similar discharge, have the same relation and dependences, and run parallel to each other?

1660. The phenomena of induction amongst currents which I had the good fortune to discover some years ago (6. &c. 1048.) may perchance here form a connecting link in the series of effects. When a current is first formed, it tends to produce a current in the contrary direction in all the matter around it; and if that matter have conducting properties and be fitly circumstanced, such a current is produced. On the contrary, when the original current is stopped, one in the same direction tends to form all around it, and, in conducting matter properly arranged, will be excited.

1661. Now though we perceive the effects only in that portion of matter which, being in the neighbourhood, has conducting properties, yet hypothetically it is probable, that the nonconducting matter has also its relations to, and is affected by, the disturbing cause, though we have not yet discovered them. Again and again the relation of conductors and non-conductors has been shown to be one not of opposition in kind, but only of degree (1334, 1603.); and, therefore, for this, as well as for other reasons, it is probable, that what will affect a conductor will affect an insulator also; producing perhaps what may deserve the term of the electrotonic state (60. 242. 1114.).

1662. It is the feeling of the necessity of some lateral connexion between the lines of electric force (1114.); of some link in the chain of effects as yet unrecognised, that urges me to the expression of these speculations. The same feeling has led me to make many experiments on the introduction of insulating dielectrics having different inductive capacities (1270. 1277.) between magnetic poles and wires carrying currents, so as to pass across the lines of magnetic force. I have employed such bodies both at rest and in motion, without, as yet, being able to detect any influence produced by them; but I do by no means consider the experiments as sufficiently delicate, and intend, very shortly, to render them more decisive[330].

1663. I think the hypothetical question may at present be put thus: can such considerations as those already generally expressed (1658.) account for the transverse effects of electrical currents? are two such currents in relation to each other merely by the inductive condition of the particles of matter between them, or are they in relation by some higher quality and condition (1654.), which, acting at a distance and not by the intermediate particles, has, like the force of gravity, no relation to them?

1664. If the latter be the case, then, when electricity is acting upon and in matter, its direct and its transverse action are essentially different in their nature; for the former, if I am correct, will depend upon the contiguous particles, and the latter will not. As I have said before, this may be so, and I incline to that view at present; but I am desirous of suggesting considerations why it may not, that the question may be thoroughly sifted.

1665. The transverse power has a character of polarity impressed upon it. In the simplest forms it appears as attraction or repulsion, according as the currents are in the same or different directions: in the current and the magnet it takes up the condition of tangential forces; and in magnets and their particles produces poles. Since the experiments have been made which have persuaded me that the polar forces of electricity, as in induction and electrolytic action (1298. 1343.), show effects at a distance only by means of the polarized contiguous and intervening particles, I have been led to expect that all polar forces act in the same general manner; and the other kinds of phenomena which one can bring to bear upon the subject seem fitted to strengthen that expectation. Thus in crystallizations the effect is transmitted from particle to particle; and in this manner, in acetic acid or freezing water a crystal a few inches or even a couple of feet in length will form in less than a second, but progressively and by a transmission of power from particle to particle. And, as far as I remember, no case of polar action, or partaking of polar action, except the one under discussion, can be found which does not act by contiguous particles[331]. It is apparently of the nature of polar forces that such should be the case, for the one force either finds or developed the contrary force near to it, and has, therefore, no occasion to seek for it at a distance.

1666. But leaving these hypothetical notions respecting the nature of the lateral action out of sight, and returning to the direct effects, I think that the phenomena examined and reasoning employed in this and the two preceding papers tend to confirm the view first taken (1464.), namely, that ordinary inductive action and the effects dependent upon it are due to an action of the contiguous particles of the dielectric interposed between the charged surfaces or parts which constitute, as it were, the terminations of the effect. The great point of distinction and power (if it have any) in the theory is, the making the dielectric of essential and specific importance, instead of leaving it as it were a mere accidental circumstance or the simple representative of space, having no more influence over the phenomena than the space occupied by it. I have still certain other results and views respecting the nature of the electrical forces and excitation, which are connected with the present theory; and, unless upon further consideration they sink in my estimation, I shall very shortly put them into form as another series of these electrical researches.