1678. That therefore induction can only take place through or across insulators; that induction is insulation, it being the necessary consequence of the state of the particles and the mode in which the influence of electrical forces is transferred or transmitted through or across such insulating media.
1679. The particles of an insulating dielectric whilst under induction may be compared to a series of small magnetic needles, or more correctly still to a series of small insulated conductors. If the space round a charged globe were filled with a mixture of an insulating dielectric, as oil of turpentine or air, and small globular conductors, as shot, the latter being at a little distance from each other so as to be insulated, then these would in their condition and action exactly resemble what I consider to be the condition and action of the particles of the insulating dielectric itself (1337.). If the globe were charged, these little conductors would all be polar; if the globe were discharged, they would all return to their normal state, to be polarized again upon the recharging of the globe. The state developed by induction through such particles on a mass of conducting mutter at a distance would be of the contrary kind, and exactly equal in amount to the force in the inductric globe. There would be a lateral diffusion of force (1224. 1297.), because each polarized sphere would be in an active or tense relation to all those contiguous to it, just as one magnet can affect two or more magnetic needles near it, and these again a still greater number beyond them. Hence would result the production of curved lines of inductive force if the inducteous body in such a mixed dielectric were an uninsulated metallic ball (1219. &c.) or other properly shaped mass. Such curved lines are the consequences of the two electric forces arranged as I have assumed them to be: and, that the inductive force can be directed in such curved lines is the strongest proof of the presence of the two powers and the polar condition of the dielectric particles.
1680. I think it is evident, that in the case stated, action at a distance can only result through an action of the contiguous conducting particles. There is no reason why the inductive body should polarize or affect distant conductors and leave those near it, namely the particles of the dielectric, unaffected: and everything in the form of fact and experiment with conducting masses or particles of a sensible size contradicts such a supposition.
1681. A striking character of the electric power is that it is limited and exclusive, and that the two forces being always present are exactly equal in amount. The forces are related in one of two ways, either as in the natural normal condition of an uncharged insulated conductor; or as in the charged state, the latter being a case of induction.
1682. Cases of induction are easily arranged so that the two forces being limited in their direction shall present no phenomena or indications external to the apparatus employed, Thus, if a Leyden jar, having its external coating a little higher than the internal, be charged and then its charging ball and rod removed, such jar will present no electrical appearances so long as its outside is uninsulated. The two forces which may be said to be in the coatings, or in the particles of the dielectric contiguous to them, are entirely engaged to each other by induction through the glass; and a carrier ball (1181.) applied either to the inside or outside of the jar will show no signs of electricity. But if the jar be insulated, and the charging ball and rod, in an uncharged state and suspended by an insulating thread of white silk, be restored to their place, then the part projecting above the jar will give electrical indications and charge the carrier, and at the same time the outside coating of the jar will be found in the opposite state and inductric towards external surrounding objects.
1683. These are simple consequences of the theory. Whilst the charge of the inner coating could induce only through the glass towards the outer coating, and the latter contained no more of the contrary force than was equivalent to it, no induction external to the jar could be perceived; but when the inner coating was extended by the rod and ball so that it could induce through the air towards external objects, then the tension of the polarized glass molecules would, by their tendency to return to the normal state, fall a little, and a portion of the charge passing to the surface of this new part of the inner conductor, would produce inductive action through the air towards distant objects, whilst at the same time a part of the force in the outer coating previously directed inwards would now be at liberty, and indeed be constrained to induct outwards through the air, producing in that outer coating what is sometimes called, though I think very improperly, free charge. If a small Leyden jar be converted into that form of apparatus usually known by the name of the electric well, it will illustrate this action very completely.
1684. The terms free charge and dissimulated electricity convey therefore erroneous notions if they are meant to imply any difference as to the mode or kind of action. The charge upon an insulated conductor in the middle of a room is in the same relation to the walls of that room as the charge upon the inner coating of a Leyden jar is to the outer coating of the same jar. The one is not more free or more dissimulated than the other; and when sometimes we make electricity appear where it was not evident before, as upon the outside of a charged jar, when, after insulating it, we touch the inner coating, it is only because we divert more or less of the inductive force from one direction into another; for not the slightest change is in such circumstances impressed upon the character or action of the force.
* * * * *
1685. Having given this general theoretical view, I will now notice particular points relating to the nature of the assumed electric polarity of the insulating dielectric particles.
1686. The polar state may be considered in common induction as a forced state, the particles tending to return to their normal condition. It may probably be raised to a very high degree by approximation of the inductric and inducteous bodies or by other circumstances; and the phenomena of electrolyzation (861. 1652. 1796.) seem to imply that the quantity of power which can thus be accumulated on a single particle is enormous. Hereafter we may be able to compare corpuscular forces, as those of gravity, cohesion, electricity, and chemical affinity, and in some way or other from their effects deduce their relative equivalents; at present we are not able to do so, but there seems no reason to doubt that their electrical, which are at the same time their chemical forces (891. 918.), will be by far the most energetic.