1714. With a plate of iron, or even a small piece of that metal, as the head of a nail, a very different effect was produced, for then the galvanometer immediately showed its sensibility, and the perfection of the general arrangement.

1715. I arranged matters so that a plate of copper 0.2 of an inch in thickness, and ten inches in diameter, should have the part near the edge interposed between the magnet and the core, in which situation it was first rotated rapidly, and then held quiescent alternately, for periods according with that required for the swinging of the needle; but not the least effect upon the galvanometer was produced.

1716. A plate of shell-lac 0.6 of an inch in thickness was applied in the same manner, but whether rotating or not it produced no effect.

1717. Occasionally the plane of rotation was directly across the magnetic curve: at other times it was made as oblique as possible; the direction of the rotation being also changed in different experiments, but not the least effect was produced.

1718. I now removed the helices with their soft iron cores, and replaced them by two flat helices wound upon card board, each containing forty-two feet of silked copper wire, and having no associated iron. Otherwise the arrangement was as before, and exceedingly sensible; for a very slight motion of the magnet between the helices produced an abundant vibration of the galvanometer needle.

1719. The introduction of plates of shell-lac, sulphur, or copper into the intervals between the magnet and these helices (1713.), produced not the least effect, whether the former were quiescent or in rapid revolution (1715.). So here no evidence of the influence of the intermediate particles could be obtained (1710.).

1720. The magnet was then removed and replaced by a flat helix, corresponding to the two former, the three being parallel to each other. The middle helix was so arranged that a voltaic current could be sent through it at pleasure. The former galvanometer was removed, and one with a double coil employed, one of the lateral helices being connected with one coil, and the other helix with the other coil, in such manner that when a voltaic current was sent through the middle helix its inductive action (26.) on the lateral helices should cause currents in them, having contrary directions in the coils of the galvanometer. By a little adjustment of the distances these induced currents were rendered exactly equal, and the galvanometer needle remained stationary notwithstanding their frequent production in the instrument. I will call the middle coil C, and the external coils A and B.

1721. A plate of copper 0.7 of an inch thick and six inches square, was placed between coils C and B, their respective distances remaining unchanged; and then a voltaic current from twenty pairs of 4 inch plates was sent through the coil C, and intermitted, in periods fitted to produce an effect on the galvanometer (1712.). if any difference had been produced in the effect of C on A and B. But notwithstanding the presence of air in one interval and copper in the other, the inductive effect was exactly alike on the two coils, and as if air had occupied both intervals. So that notwithstanding the facility with which any induced currents might form in the thick copper plate, the coil outside of it was just as much affected by the central helix C as if no such conductor as the copper had been there (65.).

1722. Then, for the copper plate was substituted one of sulphur 0.9 of an inch thick; still the results were exactly the same, i.e. there was no action at the galvanometer.

1723. Thus it appears that when a voltaic current in one wire is exerting its inductive action to produce a contrary or a similar current in a neighbouring wire, according as the primary current is commencing or ceasing, it makes not the least difference whether the intervening space is occupied by such insulating bodies as air, sulphur and shell-lac, or such conducting bodies as copper, and the other non-magnetic metals.