202. Still it seemed impossible that these results could indicate the relative inductive power of the magnet upon the different metals; for that the effect should be in some relation to the conducting power seemed a necessary consequence (139.), and the influence of rotating plates upon magnets had been found to bear a general relation to the conducting power of the substance used.
203. In the experiments of rotation (81.), the electric current is excited and discharged in the same substance, be it a good or bad conductor; but in the experiments just described the current excited in iron could not be transmitted but through the copper, and that excited in copper had to pass through iron: i.e. supposing currents of dissimilar strength to be formed in the metals proportionate to their conducting power, the stronger current had to pass through the worst conductor, and the weaker current through the best.
204. Experiments were therefore made in which different metals insulated from each other were passed between the poles of the magnet, their opposite ends being connected with the same end of the galvanometer wire, so that the currents formed and led away to the galvanometer should oppose each other; and when considerable lengths of different wires were used, feeble deflections were obtained.
205. To obtain perfectly satisfactory results a new galvanometer was constructed, consisting of two independent coils, each containing eighteen feet of silked copper wire. These coils were exactly alike in shape and number of turns, and were fixed side by side with a small interval between them, in which a double needle could be hung by a fibre of silk exactly as in the former instrument (87.). The coils may be distinguished by the letters KL, and when electrical currents were sent through them in the same direction, acted upon the needle with the sum of their powers; when in opposite directions, with the difference of their powers.
206. The compound helix (199. 8.) was now connected, the ends A and B of the iron with A and B ends of galvanometer coil K, and the ends A and B of the copper with B and A ends of galvanometer coil L, so that the currents excited in the two helices should pass in opposite directions through the coils K and L. On introducing a small cylinder magnet within the helices, the galvanometer needle was powerfully deflected. On disuniting the iron helix, the magnet caused with the copper helix alone still stronger deflection in the same direction. On reuniting the iron helix, and unconnecting the copper helix, the magnet caused a moderate deflection in the contrary direction. Thus it was evident that the electric current induced by a magnet in a copper wire was far more powerful than the current induced by the same magnet in an equal iron wire.
207. To prevent any error that might arise from the greater influence, from vicinity or other circumstances, of one coil on the needle beyond that of the other, the iron and copper terminations were changed relative to the galvanometer coils KL, so that the one which before carried the current from the copper now conveyed that from the iron, and vice versa. But the same striking superiority of the copper was manifested as before. This precaution was taken in the rest of the experiments with other metals to be described.
208. I then had wires of iron, zinc, copper, tin, and lead, drawn to the same diameter (very nearly one twentieth of an inch), and I compared exactly equal lengths, namely sixteen feet, of each in pairs in the following manner: The ends of the copper wire were connected with the ends A and B of galvanometer coil K, and the ends of the zinc wire with the terminations A and B of the galvanometer coil L. The middle part of each wire was then coiled six times round a cylinder of soft iron covered with paper, long enough to connect the poles of Daniell's horse-shoe magnet (56.) (fig. 33.), so that similar helices of copper and zinc, each of six turns, surrounded the bar at two places equidistant from each other and from the poles of the magnet; but these helices were purposely arranged so as to be in contrary directions, and therefore send contrary currents through the galvanometer coils K and L,
209. On making and breaking contact between the soft iron bar and the poles of the magnet, the galvanometer was strongly affected; on detaching the zinc it was still more strongly affected in the same direction. On taking all the precautions before alluded to (207.), with others, it was abundantly proved that the current induced by the magnet in copper was far more powerful than in zinc.
210. The copper was then compared in a similar manner with tin, lead, and iron, and surpassed them all, even more than it did zinc. The zinc was then compared experimentally with the tin, lead, and iron, and found to produce a more powerful current than any of them. Iron in the same manner proved superior to tin and lead. Tin came next, and lead the last.
211. Thus the order of these metals is copper, zinc, iron, tin, and lead. It is exactly their order with respect to conducting power for electricity, and, with the exception of iron, is the order presented by the magneto-rotation experiments of Messrs. Babbage, Herschel, Harris, &c. The iron has additional power in the latter kind of experiments, because of its ordinary magnetic relations, and its place relative to magneto-electric action of the kind now under investigation cannot be ascertained by such trials. In the manner above described it may be correctly ascertained[26].