316. A still further improvement in this form of apparatus consists in wetting a piece of filtering paper in the solution to be experimented on, and placing that under the points p and n, on the glass: the paper retains the substance evolved at the point of evolution, by its whiteness renders any change of colour visible, and allows of the point of contact between it and the decomposing wires being contracted to the utmost degree. A piece of paper moistened in the solution of iodide of potassium and starch, or of the iodide alone, with certain precautions (322.), is a most admirable test of electro-chemical action; and when thus placed and acted upon by the electric current, will show iodine evolved at p by only half a turn of the machine. With these adjustments and the use of iodide of potassium on paper, chemical action is sometimes a more delicate test of electrical currents than the galvanometer (273.). Such cases occur when the bodies traversed by the current are bad conductors, or when the quantity of electricity evolved or transmitted in a given time is very small.
317. A piece of litmus paper moistened in solution of common salt or sulphate of soda, was quickly reddened at p. A similar piece moistened in muriatic acid was very soon bleached at p. No effects of a similar kind took place at n.
318. A piece of turmeric paper moistened in solution of sulphate of soda was reddened at n by two or three turns of the machine, and in twenty or thirty turns plenty of alkali was there evolved. On turning the paper round, so that the spot came under p, and then working the machine, the alkali soon disappeared, the place became yellow, and a brown alkaline spot appeared in the new part under n.
319. On combining a piece of litmus with a piece of turmeric paper, wetting both with solution of sulphate of soda, and putting the paper on the glass, so that p was on the litmus and n on the turmeric, a very few turns of the machine sufficed to show the evolution of acid at the former and alkali at the latter, exactly in the manner effected by a volta-electric current.
320. All these decompositions took place equally well, whether the electricity passed from the machine to the foil a, through water, or through wire only; by contact with the conductor, or by sparks there; provided the sparks were not so large as to cause the electricity to pass in sparks from p to n, or towards n; and I have seen no reason to believe that in cases of true electro-chemical decomposition by the machine, the electricity passed in sparks from the conductor, or at any part of the current, is able to do more, because of its tension, than that which is made to pass merely as a regular current.
321. Finally, the experiment was extended into the following form, supplying in this case the tidiest analogy between common and voltaic electricity. Three compound pieces of litmus and turmeric paper (319.) were moistened in solution of sulphate of soda, and arranged on a plate of glass with platina wires, as in fig. 45. The wire m was connected with the prime conductor of the machine, the wire t with the discharging train, and the wires r and s entered into the course of the electrical current by means of the pieces of moistened paper; they were so bent as to rest each on three points, n, r, p; n, s, p, the points r and s being supported by the glass, and the others by the papers; the three terminations p, p, p rested on the litmus, and the other three n, n, n on the turmeric paper. On working the machine for a short time only, acid was evolved at all the poles or terminations p, p, p, by which the electricity entered the solution, and alkali at the other poles n, n, n, by which the electricity left the solution.
322. In all experiments of electro-chemical decomposition by the common machine and moistened papers (316.), it is necessary to be aware of and to avoid the following important source of error. If a spark passes over moistened litmus and turmeric paper, the litmus paper (provided it be delicate and not too alkaline,) is reddened by it; and if several sparks are passed, it becomes powerfully reddened. If the electricity pass a little way from the wire over the surface of the moistened paper, before it finds mass and moisture enough to conduct it, then the reddening extends as far as the ramifications. If similar ramifications occur at the termination n, on the turmeric paper, they prevent the occurrence of the red spot due to the alkali, which would otherwise collect there: sparks or ramifications from the points n will also redden litmus paper. If paper moistened by a solution of iodide of potassium (which is an admirably delicate test of electro-chemical action,) be exposed to the sparks or ramifications, or even a feeble stream of electricity through the air from either the point p or n, iodine will be immediately evolved.
323. These effects must not be confounded with those due to the true electro-chemical powers of common electricity, and must be carefully avoided when the latter are to be observed. No sparks should be passed, therefore, in any part of the current, nor any increase of intensity allowed, by which the electricity may be induced to pass between the platina wires and the moistened papers, otherwise than by conduction; for if it burst through the air, the effect referred to above (322.) ensues.
324. The effect itself is due to the formation of nitric acid by the combination of the oxygen and nitrogen of the air, and is, in fact, only a delicate repetition of Cavendish's beautiful experiment. The acid so formed, though small in quantity, is in a high state of concentration as to water, and produces the consequent effects of reddening the litmus paper; or preventing the exhibition of alkali on the turmeric paper; or, by acting on the iodide of potassium, evolving iodine.
325. By moistening a very small slip of litmus paper in solution of caustic potassa, and then passing the electric spark over its length in the air, I gradually neutralized the alkali, and ultimately rendered the paper red; on drying it, I found that nitrate of potassa had resulted from the operation, and that the paper had become touch-paper.