425. The order of arrangement in the course of the electric current was as follows. The positive pole of the battery was connected by a wire with the platina plate in the ice; the plate was in contact with the ice, the ice with the tin jacket, the jacket with a wire, which communicated with a piece of tin foil, on which rested one end of a bent platina wire (312.), the other or decomposing end being supported on paper moistened with solution of iodide of potassium (316.): the paper was laid flat on a platina spatula connected with the negative end of the battery. All that part of the arrangement between the ice vessel and the decomposing wire point, including both these, was insulated, so that no electricity might pass through the latter which had not traversed the former also.

426. Under these circumstances, it was found that, a pale brown spot of iodine was slowly formed under the decomposing platina point, thus indicating that ice could conduct a little of the electricity evolved by a voltaic battery charged up to the degree of intensity indicated by the electrometer. But it is quite evident that notwithstanding the enormous quantity of electricity which the battery could furnish, it was, under present circumstances, a very inferior instrument to the ordinary machine; for the latter could send as much through the ice as it could carry, being of a far higher intensity, i.e. able to open the electrometer leaves half an inch or more (419. 420.).

427. The decomposing wire and solution of iodide of potassium were then removed, and replaced by a very delicate galvanometer (205.); it was so nearly astatic, that it vibrated to and fro in about sixty-three beats of a watch giving one hundred and fifty beats in a minute. The same feebleness of current as before was still indicated; the galvanometer needle was deflected, but it required to break and make contact three or four times (297.), before the effect was decided.

428. The galvanometer being removed, two platina plates were connected with the extremities of the wires, and the tongue placed between them, so that the whole charge of the battery, so far as the ice would let it pass, was free to go through the tongue. Whilst standing on the stone floor, there was shock, &c., but when insulated, I could feel no sensation. I think a frog would have been scarcely, if at all, affected.

429. The ice was now removed, and experiments made with other solid bodies, for which purpose they were placed under the end of the decomposing wire instead of the solution of iodide of potassium (125.). For instance, a piece of dry iodide of potassium was placed on the spatula connected with the negative pole of the battery, and the point of the decomposing wire placed upon it, whilst the positive end of the battery communicated with the latter. A brown spot of iodine very slowly appeared, indicating the passage of a little electricity, and agreeing in that respect with the results obtained by the use of the electrical machine (421.). When the galvanometer was introduced into the circuit at the same time with the iodide, it was with difficulty that the action of the current on it could be rendered sensible.

430. A piece of common salt previously fused and solidified being introduced into the circuit was sufficient almost entirely to destroy the action on the galvanometer. Fused and cooled chloride of lead produced the same effect. The conducting power of these bodies, when fluid, is very great (395. 402.).

431. These effects, produced by using the common machine and the voltaic battery, agree therefore with each other, and with the law laid down in this paper (394.); and also with the opinion I have supported, in the Third Series of these Researches, of the identity of electricity derived from different sources (360.).

432. The effect of heat in increasing the conducting power of many substances, especially for electricity of high tension, is well known. I have lately met with an extraordinary case of this kind, for electricity of low tension, or that of the voltaic pile, and which is in direct contrast with the influence of heat upon metallic bodies, as observed and described by Sir Humphry Davy[76].

433. The substance presenting this effect is sulphuret of silver. It was made by fusing a mixture of precipitated silver and sublimed sulphur, removing the film of silver by a file from the exterior of the fused mass, pulverizing the sulphuret, mingling it with more sulphur, and fusing it again in a green glass tube, so that no air should obtain access during the process. The surface of the sulphuret being again removed by a file or knife, it was considered quite free from uncombined silver.

434. When a piece of this sulphuret, half an inch in thickness, was put between surfaces of platina, terminating the poles of a voltaic battery of twenty pairs of four-inch plates, a galvanometer being also included in the circuit, the needle was slightly deflected, indicating a feeble conducting power. On pressing the platina poles and sulphuret together with the fingers, the conducting power increased as the whole became warm. On applying a lamp under the sulphuret between the poles, the conducting power rose rapidly with the heat, and at last-the galvanometer needle jumped into a fixed position, and the sulphuret was found conducting in the manner of a metal. On removing the lamp and allowing the heat to fall, the effects were reversed, the needle at first began to vibrate a little, then gradually left its transverse direction, and at last returned to a position very nearly that which it would take when no current was passing through the galvanometer.