715. Experiments of a similar kind were made with the single-plate, straight tubes (707.), and also with the curved tubes (708.), with similar consequences; and when these, with the former tubes, were arranged together in various ways, the result, as to the equality of action of large and small metallic surfaces when delivering and receiving the same current of electricity, was constantly the same. As an illustration, the following numbers are given. An instrument with two wires evolved 74.3 volumes of mixed gases; another with plates 73.25 volumes; whilst the sum of the oxygen and hydrogen in two separate tubes amounted to 73.65 volumes. In another experiment the volumes were 55.3, 55.3, and 54.4.
716. But it was observed in these experiments, that in single-plate tubes (707.) more hydrogen was evolved at the negative electrode than was proportionate to the oxygen at the positive electrode; and generally, also, more than was proportionate to the oxygen and hydrogen in a double-plate tube. Upon more minutely examining these effects, I was led to refer them, and also the differences between wires and plates (714.), to the solubility of the gases evolved, especially at the positive electrode.
717. When the positive and negative electrodes are equal in surface, the bubbles which rise from them in dilute sulphuric acid are always different in character. Those from the positive plate are exceedingly small, and separate instantly from every part of the surface of the metal, in consequence of its perfect cleanliness (633.); whilst in the liquid they give it a hazy appearance, from their number and minuteness; are easily carried down by currents, and therefore not only present far greater surface of contact with the liquid than larger bubbles would do, but are retained a much longer time in mixture with it. But the bubbles at the negative surface, though they constitute twice the volume of the gas at the positive electrode, are nevertheless very inferior in number. They do not rise so universally from every part of the surface, but seem to be evolved at different parts; and though so much larger, they appear to cling to the metal, separating with difficulty from it, and when separated, instantly rising to the top of the liquid. If, therefore, oxygen and hydrogen had equal solubility in, or powers of combining with, water under similar circumstances, still under the present conditions the oxygen would be far the most liable to solution; but when to these is added its well-known power of forming a compound with water, it is no longer surprising that such a compound should be produced in small quantities at the positive electrode; and indeed the blenching power which some philosophers have observed in a solution at this electrode, when chlorine and similar bodies have been carefully excluded, is probably due to the formation there, in this manner, of oxywater.
718. That more gas was collected from the wires than from the plates, I attribute to the circumstance, that as equal quantities were evolved in equal times, the bubbles at the wires having been more rapidly produced, in relation to any part of the surface, must have been much larger; have been therefore in contact with the fluid by a much smaller surface, and for a much shorter time than those at the plates; hence less solution and a greater amount collected.
719. There was also another effect produced, especially by the use of large electrodes, which was both a consequence and a proof of the solution of part of the gas evolved there. The collected gas, when examined, was found to contain small portions of nitrogen. This I attribute to the presence of air dissolved in the acid used for decomposition. It is a well-known fact, that when bubbles of a gas but slightly soluble in water or solutions pass through them, the portion of this gas which is dissolved displaces a portion of that previously in union with the liquid: and so, in the decompositions under consideration, as the oxygen dissolves, it displaces a part of the air, or at least of the nitrogen, previously united to the acid; and this effect takes place most extensively with large plates, because the gas evolved at them is in the most favourable condition for solution,
720. With the intention of avoiding this solubility of the gases as much as possible, I arranged the decomposing plates in a vertical position (707. 708.), that the bubbles might quickly escape upwards, and that the downward currents in the fluid should not meet ascending currents of gas. This precaution I found to assist greatly in producing constant results, and especially in experiments to be hereafter referred to, in which other liquids than dilute sulphuric acid, as for instance solution of potash, were used.
721. The irregularities in the indications of the measurer proposed, arising from the solubility just referred to, are but small, and may be very nearly corrected by comparing the results of two or three experiments. They may also be almost entirely avoided by selecting that solution which is found to favour them in the least degree (728.); and still further by collecting the hydrogen only, and using that as the indicating gas; for being much less soluble than oxygen, being evolved with twice the rapidity and in larger bubbles (717.), it can be collected more perfectly and in greater purity.
722. From the foregoing and many other experiments, it results that variation in the size of the electrodes causes no variation in the chemical action of a given quantity of electricity upon water.
723. The next point in regard to which the principle of constant electro-chemical action was tested, was variation of intensity. In the first place, the preceding experiments were repeated, using batteries of an equal number of plates, strongly and weakly charged; but the results were alike. They were then repeated, using batteries sometimes containing forty, and at other times only five pairs of plates; but the results were still the same. Variations therefore in the intensity, caused by difference in the strength of charge, or in the number of alternations used, produced no difference as to the equal action of large and small electrodes.
724. Still these results did not prove that variation in the intensity of the current was not accompanied by a corresponding variation in the electro-chemical effects, since the actions at all the surfaces might have increased or diminished together. The deficiency in the evidence is, however, completely supplied by the former experiments on different-sized electrodes; for with variation in the size of these, a variation in the intensity must have occurred. The intensity of an electric current traversing conductors alike in their nature, quality, and length, is probably as the quantity of electricity passing through a given sectional area perpendicular to the current, divided by the time (360. note); and therefore when large plates were contrasted with wires separated by an equal length of the same decomposing conductor (714.), whilst one current of electricity passed through both arrangements, that electricity must have been in a very different state, as to tension, between the plates and between the wires; yet the chemical results were the same.