763. This constancy does not decide whether the muriatic acid is electrolyzed or not, although it proves that if so, it must be in definite proportions to the quantity of electricity used. Other considerations may, however, be allowed to decide the point. The analogy between chlorine and oxygen, in their relations to hydrogen, is so strong, as to lead almost to the certainty, that, when combined with that element, they would perform similar parts in the process of electro-decomposition. They both unite with it in single proportional or equivalent quantities; and the number of proportionals appearing to have an intimate and important relation to the decomposability of a body (697.), those in muriatic acid, as well as in water, are the most favourable, or those perhaps even necessary, to decomposition. In other binary compounds of chlorine also, where nothing equivocal depending on the simultaneous presence of it and oxygen is involved, the chlorine is directly eliminated at the anode by the electric current. Such is the case with the chloride of lead (395.), which may be justly compared with protoxide of lead (402.), and stands in the same relation to it as muriatic acid to water. The chlorides of potassium, sodium, barium, &c., are in the same relation to the protoxides of the same metals and present the same results under the influence of the electric current (402.).

764. From all the experiments, combined with these considerations, I conclude that muriatic acid is decomposed by the direct influence of the electric current, and that the quantities evolved are, and therefore the chemical action is, definite for a definite quantity of electricity. For though I have not collected and measured the chlorine, in its separate state, at the anode, there can exist no doubt as to its being proportional to the hydrogen at the cathode; and the results are therefore sufficient to establish the general law of constant electro-chemical action in the case of muriatic acid.

765. In the dilute acid (761.), I conclude that a part of the water is electro-chemically decomposed, giving origin to the oxygen, which appears mingled with the chlorine at the anode. The oxygen may be viewed as a secondary result; but I incline to believe that it is not so; for, if it were, it might be expected in largest proportion from the stronger acid, whereas the reverse is the fact. This consideration, with others, also leads me to conclude that muriatic acid is more easily decomposed by the electric current than water; since, even when diluted with eight or nine times its quantity of the latter fluid, it alone gives way, the water remaining unaffected.

766. Chlorides.—On using solutions of chlorides in water,—for instance, the chlorides of sodium or calcium,—there was evolution of chlorine only at the positive electrode, and of hydrogen, with the oxide of the base, as soda or lime, at the negative electrode. The process of decomposition may be viewed as proceeding in two or three ways, all terminating in the same results. Perhaps the simplest is to consider the chloride as the substance electrolyzed, its chlorine being determined to and evolved at the anode, and its metal passing to the cathode, where, finding no more chlorine, it acts upon the water, producing hydrogen and an oxide as secondary results. As the discussion would detain me from more important matter, and is not of immediate consequence, I shall defer it for the present. It is, however, of great consequence to state, that, on using the volta-electrometer, the hydrogen in both cases was definite; and if the results do not prove the definite decomposition of chlorides, (which shall be proved elsewhere,—789. 794. 814.,) they are not in the slightest degree opposed to such a conclusion, and do support the general law.

767. Hydriodic acid.—A solution of hydriodic acid was affected exactly in the same manner as muriatic acid. When strong, hydrogen was evolved at the negative electrode, in definite proportion to the quantity of electricity which had passed, i.e. in the same proportion as was evolved by the same current from water; and iodine without any oxygen was evolved at the positive electrode. But when diluted, small quantities of oxygen appeared with the iodine at the anode, the proportion of hydrogen at the cathode remaining undisturbed.

768. I believe the decomposition of the hydriodic acid in this case to be direct, for the reasons already given respecting muriatic acid (763. 764.).

769. Iodides.—A solution of iodide of potassium being subjected to the voltaic current, iodine appeared at the positive electrode (without any oxygen), and hydrogen with free alkali at the negative electrode. The same observations as to the mode of decomposition are applicable here as were made in relation to the chlorides when in solution (766.).

770. Hydro-fluoric acid and fluorides.—Solution of hydrofluoric acid did not appear to be decomposed under the influence of the electric current: it was the water which gave way apparently. The fused fluorides were electrolysed (417.); but having during these actions obtained fluorine in the separate state, I think it better to refer to a future series of these Researches, in which I purpose giving a fuller account of the results than would be consistent with propriety here[177].

771. Hydro-cyanic acid in solution conducts very badly. The definite proportion of hydrogen (equal to that from water) was set free at the cathode, whilst at the anode a small quantity of oxygen was evolved and apparently a solution of cyanogen formed. The action altogether corresponded with that on a dilute muriatic or hydriodic acid. When the hydrocyanic acid was made a better conductor by sulphuric acid, the same results occurred.

Cyanides.—With a solution of the cyanide of potassium, the result was precisely the same as with a chloride or iodide. No oxygen was evolved at the positive electrode, but a brown solution formed there. For the reasons given when speaking of the chlorides (766.), and because a fused cyanide of potassium evolves cyanogen at the positive electrode[178], I incline to believe that the cyanide in solution is directly decomposed.