799. In one experiment of this kind I used borate of lead (408. 673.). It evolves lead, under the influence of the electric current, at the anode, and oxygen at the cathode; and as the boracic acid is not either directly (408.) or incidentally decomposed during the operation, I expected a result dependent on the oxide of lead. The borate is not so violent a flux as the oxide, but it requires a higher temperature to make it quite liquid; and if not very hot, the bubbles of oxygen cling to the positive electrode, and retard the transfer of electricity. The number for lead came out 101.29, which is so near to 103.5 as to show that the action of the current had been definite.
800. Oxide of bismuth.—I found this substance required too high a temperature, and acted too powerfully as a flux, to allow of any experiment being made on it, without the application of more time and care than I could give at present.
801. The ordinary protoxide of antimony, which consists of one proportional of metal and one and a half of oxygen, was subjected to the action of the electric current in a green-glass tube (789.), surrounded by a jacket of platina foil, and heated in a charcoal fire. The decomposition began and proceeded very well at first, apparently indicating, according to the general law (679. 697.), that this substance was one containing such elements and in such proportions as made it amenable to the power of the electric current. This effect I have already given reasons for supposing may be due to the presence of a true protoxide, consisting of single proportionals (696. 693.). The action soon diminished, and finally ceased, because of the formation of a higher oxide of the metal at the positive electrode. This compound, which was probably the peroxide, being infusible and insoluble in the protoxide, formed a crystalline crust around the positive electrode; and thus insulating it, prevented the transmission of the electricity. Whether, if it had been fusible and still immiscible, it would have decomposed, is doubtful, because of its departure from the required composition (697.). It was a very natural secondary product at the positive electrode (779.). On opening the tube it was found that a little antimony had been separated at the negative electrode; but the quantity was too small to allow of any quantitative result being obtained[180].
802. Iodide of lead.—This substance can be experimented with in tubes heated by a spirit-lamp (789.); but I obtained no good results from it, whether I used positive electrodes of platina or plumbago. In two experiments the numbers for the lead came out only 75.46 and 73.45, instead of 103.5. This I attribute to the formation of a periodide at the positive electrode, which, dissolving in the mass of liquid iodide, came in contact with the lead evolved at the negative electrode, and dissolved part of it, becoming itself again protiodide. Such a periodide does exist; and it is very rarely that the iodide of lead formed by precipitation, and well-washed, can be fused without evolving much iodine, from the presence of this percompound; nor does crystallization from its hot aqueous solution free it from this substance. Even when a little of the protiodide and iodine are merely rubbed together in a mortar, a portion of the periodide is formed. And though it is decomposed by being fused and heated to dull redness for a few minutes, and the whole reduced to protiodide, yet that is not at all opposed to the possibility, that a little of that which is formed in great excess of iodine at the anode, should be carried by the rapid currents in the liquid into contact with the cathode.
803. This view of the result was strengthened by a third experiment, where the space between the electrodes was increased to one third of an inch; for now the interfering effects were much diminished, and the number of the lead came out 89.04; and it was fully confirmed by the results obtained in the cases of transfer to be immediately described (818.).
The experiments on iodide of lead therefore offer no exception to the general law under consideration, but on the contrary may, from general considerations, be admitted as included in it.
804. Protiodide of tin.—This substance, when fused (402.), conducts and is decomposed by the electric current, tin is evolved at the anode, and periodide of tin as a secondary result (779. 790.) at the cathode. The temperature required for its fusion is too high to allow of the production of any results fit for weighing.
805. Iodide of potassium was subjected to electrolytic action in a tube, like that in fig. 68. (789.). The negative electrode was a globule of lead, and I hoped in this way to retain the potassium, and obtain results that could be weighed and compared with the volta-electrometer indication; but the difficulties dependent upon the high temperature required, the action upon the glass, the fusibility of the platina induced by the presence of the lead, and other circumstances, prevented me from procuring such results. The iodide was decomposed with the evolution of iodine at the anode, and of potassium at the cathode, as in former cases.
806. In some of these experiments several substances were placed in succession, and decomposed simultaneously by the same electric current: thus, protochloride of tin, chloride of lead, and water, were thus acted on at once. It is needless to say that the results were comparable, the tin, lead, chlorine, oxygen, and hydrogen evolved being definite in quantity and electro-chemical equivalents to each other.
* * * * *