And now for another experiment. We have already gained a knowledge of the manner in which the particles of bodies—of solid bodies—attract each other, and we have learnt that it makes calcareous spar, alum, and so forth, crystallise in these regular forms. Now, let me gradually lead your minds to a knowledge of the means we possess of making this attraction alter a little in its force; either of increasing, or diminishing, or apparently of destroying it altogether. I will take this piece of iron soft mean? Why, that the attraction between the particles is so weakened that it is no longer sufficient to resist the power we bring to bear upon it. [Mr. Anderson handed to the Lecturer the iron rod, with one end red-hot, which he shewed could be easily twisted about with a pair of pliers.] You see, I now find no difficulty in bending this end about as I like; whereas I cannot bend the cold part at all. And you know how the smith takes a piece of iron and heats it, in order to render it soft for his purpose: he acts upon our principle of lessening the adhesion of the particles, although he is not exactly acquainted with the terms by which we express it.
And now we have another point to examine; and this water is again a very good substance to take as an illustration (as philosophers we call it all water, even though it be in the form of ice or steam). Why is this water hard? [pointing to a block of ice] because the attraction of the particles to each other is sufficient to make them retain their places in opposition to force applied to it. But what happens when we make the ice warm? Why, in that case we diminish to such a large extent the power of attraction that the solid substance is destroyed altogether. Let me illustrate this: I will take a red-hot ball of iron [Mr. Anderson, by means of a pair of tongs, handed to the Lecturer a red-hot ball of iron, about two inches in diameter], because it will serve as a convenient source of heat [placing the red-hot iron in the centre of the block of ice]. You see I am now melting the ice where the iron touches it. You see the iron sinking into it, and while part of the solid water is becoming liquid, the heat of the ball is rapidly going off. A certain part of the water is actually rising in steam—the attraction of some of the particles is so much diminished that they cannot even hold together in the liquid form, but escape as vapour. At the same time, you see I cannot melt all this ice by the heat contained in this ball. In the course of a very short time I shall find it will have become quite cold.
Here is the water which we have produced by destroying some of the attraction which existed between the particles of the ice,—for below a certain temperature the particles of water increase in their mutual attraction, and become ice; and above a certain temperature the attraction decreases, and the water becomes steam. And exactly the same thing happens with platinum, and nearly every substance in nature; if the temperature is increased to a certain point, it becomes liquid, and a further increase converts it into a gas. Is it not a glorious thing for us to look at the sea, the rivers, and so forth, and to know that this same body in the northern regions is all solid ice and icebergs, while here, in a warmer climate, it has its attraction of cohesion so much diminished as to be liquid water. Well, in diminishing this force of attraction between the particles of ice, we made use of another force, namely, that of heat; and I want you now to understand that this force of heat is always concerned when water passes from the solid to the liquid state. If I melt ice in other ways, I cannot do without heat (for we have the means of making ice liquid without heat; that is to say, without using heat as a direct cause). Suppose, for illustration, I make a vessel out of this piece of tinfoil [bending the foil up into the shape of a dish]. I am making it metallic, because I want the heat which I am about to deal with to pass readily through it; and I am going to pour a little water on this board, and then place the tin vessel on it. Now if I put some of this ice into the metal dish, and then proceed to make it liquid by any of the various means we have at our command, it still must take the necessary quantity of heat from something, and in this case it will take the heat from the tray, and from the water underneath, and from the other things round about. Well, a little salt added to the ice has the power of causing it to melt, and we shall very shortly see the mixture become quite fluid, and you will then find that the water beneath will be frozen—frozen, because it has been forced to give up that heat which is necessary to keep it in the liquid state, to the ice on becoming liquid. I remember once, when I was a boy, hearing of a trick in a country alehouse; the point was how to melt ice in a quart-pot by the fire, and freeze it to the stool. Well, the way they did it was this: they put some pounded ice in a pewter pot and added some salt to it, and the consequence was, that when the salt was mixed with it, the ice in the pot melted (they did not tell me anything about the salt, and they set the pot by the fire, just to make the result more mysterious), and in a short time the pot and the stool were frozen together, as we shall very shortly find it to be the case here. And all because salt has the power of lessening the attraction between the particles of ice. Here you see the tin dish is frozen to the board—I can even lift this little stool up by it.
Fig. 21.
This experiment cannot, I think, fail to impress upon your minds the fact, that whenever a solid body loses some of that force of attraction by means of which it remains solid, heat is absorbed; and if, on the other hand, we convert a liquid into a solid, e.g., water into ice, a corresponding amount of heat is given out. I have an experiment shewing this to be the case. Here (fig. 21) is a bulb, A, filled with air, the tube from which dips into some coloured liquid in the vessel B. And I dare say you know that if I put my hand on the bulb A, and warm it, the coloured liquid which is now standing in the tube at C will travel forward. Now we have discovered a means, by great care and research into the properties of various bodies, of preparing a solution of a salt[15] which, if shaken or disturbed, will at once become a solid; and as I explained to you just now (for what is true of water is true of every other liquid), by reason of its becoming solid, heat is evolved, and I can make this evident to you by pouring it over this bulb;—there! it is becoming solid, and look at the coloured liquid, how it is being driven down the tube, and how it is bubbling out through the water at the end; and so we learn this beautiful law of our philosophy, that whenever we diminish the attraction of cohesion, we absorb heat—and whenever we increase that attraction, heat is evolved. This, then, is a great step in advance, for you have learned a great deal in addition to the mere circumstance that particles attract each other. But you must not now suppose that because they are liquid they have lost their attraction of cohesion; for here is the fluid mercury, and if I pour it from one vessel into another, I find that it will form a stream from the bottle down to the glass—a continuous rod of fluid mercury, the particles of which have attraction sufficient to make them hold together all the way through the air down to the glass itself; and if I pour water quietly from a jug, I can cause it to run in a continuous stream in the same manner. Again, let me put a little water on this piece of plate-glass, and then take another plate of glass and put it on the water; there! the upper plate is quite free to move, gliding about on the lower one from side to side; and yet, if I take hold of the upper plate and lift it up straight, the cohesion is so great that the lower one is held up by it. See how it runs about as I move the upper one! and this is all owing to the strong attraction of the particles of the water. Let me shew you another experiment. If I take a little soap and water—not that the soap makes the particles of the water more adhesive one for the other but it certainly has the power of continuing in a better manner the attraction of the particles (and let me advise you, when about to experiment with soap-bubbles, to take care to have everything clean and soapy). I will now blow a bubble; and that I may be able to talk and blow a bubble too, I will take a plate with a little of the soapsuds in it, and will just soap the edges of the pipe, and blow a bubble on to the plate. Now, there is our bubble. Why does it hold together in this manner? Why, because the water of which it is composed has an attraction of particle for particle,—so great, indeed, that it gives to this bubble the very power of an india-rubber ball; for you see, if I introduce one end of this glass tube into the bubble, that it has the power of contracting so powerfully as to force enough air through the tube to blow out a light (fig. 22)—the light is blown out. And look! see how the bubble is disappearing, see how it is getting smaller and smaller.
Fig. 22. and Fig. 23.
There are twenty other experiments I might shew you to illustrate this power of cohesion of the particles of liquids. For instance, what would you propose to me if, having lost the stopper out of this alcohol bottle, I should want to close it speedily with something near at hand. Well, a bit of paper would not do, but a piece of linen cloth would, or some of this cotton wool which I have here. I will put a tuft of it into the neck of the alcohol bottle, and you see, when I turn it upside down, that it is perfectly well stoppered, so far as the alcohol is concerned; the air can pass through, but the alcohol cannot. And if I were to take an oil vessel, this plan would do equally well, for in former times they used to send us oil from Italy in flasks stoppered only with cotton wool (at the present time the cotton is put in after the oil has arrived here, but formerly it used to be sent so stoppered). Now, if it were not for the particles of liquid cohering together, this alcohol would run out; and if I had time, I could have shewn you a vessel with the top, bottom, and sides altogether formed like a sieve, and yet it would hold water, owing to this cohesion.
You have now seen that the solid water can become fluid by the addition of heat, owing to this lessening the attractive force between its particles, and yet you see that there is a good deal of attractive force remaining behind. I want now to take you another step beyond. We saw that if we continued applying heat to the water (as indeed happened with our piece of ice here), that we did at last break up that attraction which holds the liquid together; and I am about to take some ether (any other liquid would do, but ether makes a better experiment for my purpose), in order to illustrate what will happen when this cohesion is broken up. Now, this liquid ether, if exposed to a very low temperature, will become a solid; but if we apply heat to it, it becomes vapour, and I want to shew you the enormous bulk of the substance in this new form—when we make ice into water, we lessen its bulk, but when we convert water into steam, we increase it to an enormous extent. You see it is very clear that as I apply heat to the liquid I diminish its attraction of cohesion—it is now boiling, and I will set fire to the vapour, so that you may be enabled to judge of the space occupied by the ether in this form by the size of its flame, and you now see what an enormously bulky flame I get from that small volume of ether below. The heat from the spirit-lamp is now being consumed, not in making the ether any warmer, but in converting it into vapour; and if I desired to catch this vapour and condense it (as I could without much difficulty), I should have to do the same as if I wished to convert steam into water and water into ice: in either case it would be necessary to increase the attraction of the particles, by cold or otherwise. So largely is the bulk occupied by the particles increased by giving them this diminished attraction, that if I were to take a portion of water a cubic inch in bulk (A, fig. 23) I should produce a volume of steam of that size, B [1700 cubic inches; nearly a cubic foot], so greatly is the attraction of cohesion diminished by heat; and yet it still remains water. You can easily imagine the consequences which are due to this change in volume by heat—the mighty powers of steam and the tremendous explosions which are sometimes produced by this force of water. I want you now to see another experiment, which will perhaps give you a better illustration of the bulk occupied by a body when in the state of vapour. Here is a substance which we call iodine, and I am about to submit this solid body to the same kind of condition as regards heat that I did the water and the ether [putting a few grains of iodine into a hot glass globe, which immediately became filled with the violet vapour], and you see the same kind of change produced. Moreover, it gives us the opportunity of observing how beautiful is the violet-coloured vapour from this black substance, or rather the mixture of the vapour with air (for I would not wish you to understand that this globe is entirely filled with the vapour of iodine).