The completion of the mathematical training under Routh recommended by Niven was approaching its end, and I was satisfied with its results. I could follow without much effort the lectures of Stokes and Lord Rayleigh, and I could handle the mathematics of Maxwell’s theory of electricity with considerable ease; but I did not understand his physics.
President Barnard, of Columbia College, said once in an address of fifty years ago that a young student in America at that time lacked a “knowledge of visible things and not information about them—knowledge acquired by the learner’s own conscious efforts, not crammed into his mind in set forms of words out of books.” His statement fitted admirably my own case; I lacked that knowledge of visible things which one gets from his own conscious efforts; I had no knowledge of physics acquired from my own conscious efforts in a physical laboratory. Neither Columbia College nor any other college in the United States, with very few exceptions, offered at that time this opportunity to the student. I suspected that this was the real secret of my inability to understand Maxwell’s physics; I longed for work in a real physical laboratory and made preparations to enter the Cavendish Laboratory at Cambridge. But I learned, in the beginning of 1885, that Lord Rayleigh had given up the directorship of this laboratory, and that a Mr. J.J. Thomson of Trinity College had been appointed as his successor, the same Thomson who is to-day Sir John Joseph Thomson, Master of Trinity College, and the leading physicist in the world. The new director was only twenty-eight years of age in the year of his appointment—at the end of 1884. Although a second wrangler in the mathematical tripos test of 1880, he was four years later already a sufficiently famous experimental physicist to be appointed director of the Cavendish Laboratory. The new director was only two years older than myself, but he was already a famous experimental physicist, whereas I had never had a physical apparatus in my hand. What will he think of me, thought I, when I present myself to him and ask for permission to work as a mere beginner in the Cavendish Laboratory! I blushed when I thought of it, and I was afraid that I should blush even more when he compared me to his younger students who had already acquired much skill in physical manipulations. The failure of my competition with boys and girls in the speed tests of punching biscuits in the Cortlandt Street cracker factory came back to my memory; and I bemoaned, just as I did in Cortlandt Street nine years before, my hard luck of having had no earlier training. Many an American college student of physics bemoaned in those days his lack of early laboratory training. When I say this I am touching the principal point of my narrative; it is the point at which my narrative begins to sail on the back of a wave which started actually when Johns Hopkins University was organized, in 1876, but the motive power of which had been gathering long before that, perhaps at the same time when the motive power of the Cambridge movement in favor of scientific research was gathering, resulting, as it had, in the establishment of the Cavendish Laboratory. But I must resume the thread of my story and return later to the point just mentioned.
My lack of what Barnard called “knowledge of visible things ... acquired by the learner’s own conscious efforts ...” gave me much anxiety; and I often thought that it would, perhaps, be better to go to some other university where the director of the physical laboratory was an older man, who would not notice my age as much as would the new and extremely young director of the Cavendish Laboratory. That thought, however, did not console me much, because I was very much attached to Cambridge and did not wish to give up what my mother called “life among the saints of Cambridge.” Just then, as if by an act of kind providence, a letter from President Barnard of Columbia College reached me, enclosing a letter of introduction to John Tyndall, the famous physicist, colleague and successor of Faraday in the direction of the Royal Institution. Barnard informed me that Columbia had received a generous sum of money from Tyndall, representing a part of the net proceeds from his famous course of public lectures on light, which he had delivered in the United States in 1872–1873; that the income of this sum would be given as a fellowship to a Columbia graduate to assist him in his study of experimental physics; that the fellowship would be called a John Tyndall Fellowship, netting over five hundred dollars annually; and that he and Rood, professor of physics at Columbia, considered me a suitable candidate. Unexpected things of this kind happen every now and then, and when they do they certainly encourage the belief that there is such a thing as luck.
I called on Tyndall without much delay, and delivered Barnard’s letter of introduction. One may imagine how I felt when I saw and spoke to the very man whose descriptions of physical phenomena had been the first to disclose to me on the top loft of the Cortlandt Street factory the poetical side of the physical sciences. I expected to find a scientist looking like a poet and a dreamer, but I did not. He looked exactly what he was: a plain and benevolent Irishman. I had seen many an old Irishman, among my New York friends and acquaintances, who looked exactly as Tyndall looked; and when he spoke there was also the fire, the vigor, and the humor of the agile Irish mind. In less than the time it takes to tell this he made me feel that I had always known him, and that he was my old and generous friend. His questions were wonderfully direct, just as direct, I thought, as the questions which he addressed to physical phenomena when in his famous lectures he was deciphering their hidden meaning. He deciphered me very quickly, I thought, as if I were the simplest physical phenomenon which he had ever observed. The fact, however, that I held his attention encouraged me. He apparently attached no very great importance to my lack of early training in experimental physics, but advised me to avoid further delay. He informed me, by way of encouraging me, that he was over thirty when he took his doctor’s degree at the University of Marburg, in Germany. A lack of early advantages, he thought, could always be overcome by redoubling one’s efforts in later years. His own career proved that. He called my attention to a short account of the work of the famous Helmholtz, written for Nature by no less a man, he said, than great Maxwell. This story, he thought, would show me that the great professor at the University of Berlin did not have early advantages in experimental physics, and that he became a professor of physics when he was already fifty years of age. He encouraged me to apply for the new fellowship at Columbia as soon as it became operative, and to make up my mind quickly to migrate to the best physical laboratory that I could find. I asked him what laboratory he would recommend and he again directed my attention to Maxwell’s account of the work of Helmholtz. When I was about to leave, promising, at his request, to call again, he gave me a copy of his lectures on light, which he had delivered in the United States thirteen years before. “Read them,” he said, “and when you come again I shall be glad to discuss with you some of the points of this little book; they will explain to you the full meaning of President Barnard’s letter, and of its historical background. Read also volume VIII of Nature.”
I had read Tyndall’s lectures on light before I entered Columbia College, but upon reading them again I found there very many things which I had missed before. They did not, of course, describe satisfactorily the physical properties of the luminiferous ether—no lectures ever did—but they did describe, I thought, a bit of the history of physical sciences in the United States which was a revelation to me, and was, as I know now, a most important contribution to the history of the development of scientific thought in the United States. It deserves a prominent place in this narrative, because I had been a witness of this development during the past forty years.
JOSEPH HENRY (1799–1878)
Joseph Henry, the most distinguished American physicist, together with other distinguished American scientists, among them President Barnard of Columbia College, invited Tyndall, in 1872, to deliver a course of lectures in some of the principal cities in the United States. The object of these lectures was, quoting Tyndall’s words, “to show the uses of experiment in the cultivation of natural knowledge,” hoping that this “would materially promote scientific education in this country.” Tyndall delivered his famous course of six lectures on light in Boston, New York, Philadelphia, Baltimore, and Washington. Joseph Henry, as secretary of the Smithsonian Institution and president of the National Academy of Sciences, took them under his personal direction. The success of these lectures surpassed even the most sanguine expectations. At the farewell dinner to Tyndall some of the wisest scientific intellects of the land were heard, and their words indicated clearly what was the uppermost thought in the minds of the scientific men of the United States when they invited Tyndall. I quote here some of the words spoken by these men.
President Barnard of Columbia, the first American expounder of the undulatory theory of light, said: