There was one explanation which always appealed to me much on account of its simplicity. I heard it from a very learned German. This was his story: The German iron always contained phosphorus, including also the great deposits of iron which the Germans had found in Alsace-Lorraine. The only good iron that Germany had prior to 1880 was that in the Iron Chancellor. Hence, Germany could not build up a steel industry, and without it no great industrial development is possible in any country. A miracle happened; a young Englishman, a clerk in a London police court, made a discovery which was destined to give Germany its great steel industry. This was Sidney Gilchrist Thomas, who discovered the so-called “basic Bessemer” process. It made iron containing phosphorus easily available for the manufacture of iron and steel products. This started the modern steel industry of Germany in the early eighties. Many a street in the towns of the German steel districts was named in honor of Gilchrist Thomas. “This,” said my informant, “is the power which, as you express it, the young German eagle has discovered in its pinions.” I suspected that the object of his story might have been to discourage an opinion on my part that the remarkable vigor of Germany was derived from the weakness of France. Hence I looked up the data of his story, but I found them correct. Years ago I told this story to the late Andrew Carnegie, and he agreed with my German informant. To-day I am convinced that neither the great works of Krupp, nor the great German navy, nor many other things which have happened since my Berlin days, would have been possible without the start which was made with the aid of Gilchrist Thomas.
Another remarkable assertion from the same informant made a lasting impression. According to him, united Germany would not have endured very long, if it had not been for the rapid rise of the German steel industry and of other German industries which followed in its wake. The organization of Germany as an economic unit secured the organization of Germany as a political unit. He summed it up by saying that Bismarck and Moltke had raised the structure of the German Empire, but that Gilchrist Thomas had built a steel ring around it which prevented it from falling to pieces. He added then a corollary to this startling statement, and I repeat it here in the form of a question. If the scientific research of a young clerk in a London police court, who studied chemistry in a London evening school, could do so much for Germany, how much can one reasonably expect from the great research laboratories of the German universities and technical schools? This, according to my informant, had become a national question in Germany. This information reminded me that the great movement in Great Britain and in the United States for higher scientific research was also present in Germany, but in a much more advanced form. My informant called my attention to Werner von Siemens’s pioneer work in this German movement.
Ernst Werner von Siemens was at that time, next to Helmholtz, the most admired scientist in the German Empire. He was the head of a great electrical plant in the heart of Berlin, and was known everywhere to possess a splendid combination of talents in abstract science and engineering. Men of that type were quite rare in those days, and they are very rare even to-day. I heard a great deal about him in a course of lectures on electrical engineering which I attended at the Polytechnic School of Berlin. I saw him several times, when he called at the Physical Institute on his friend and relative by marriage, Excellenz von Helmholtz. His remarkable appearance made a strong impression upon me, and I longed to see his great plant, where all kinds of electrical things were made, from the finest electrical precision instruments to the largest types of dynamos and motors, many of them his own inventions. As a sign of special favor Helmholtz gave me a note of introduction to his distinguished friend, who received me graciously and gave me to an official who took me around the great electrical plant, the first that I had ever seen. The impression which it made upon my mind was certainly wonderful, but not more wonderful than the impression which the great personality of Siemens had made upon me. The more I learned about him the more I became convinced that no industrial organization ever had a presiding genius of greater attainments than Siemens. His attitude toward abstract science and its relation to the industries is best described by mentioning here a fact which is of great significance in the history of physical science. He founded in that year, 1887, the great Physical-Technical Institute, and presented it to the German nation; Helmholtz was its first president. The modern science of radiation rests upon a foundation first laid by Kirchhoff and greatly strengthened by additional experimental data obtained in this institute under the guidance of Helmholtz. Planck, the successor of Kirchhoff at the University of Berlin, already in office before I left Berlin, was undoubtedly inspired by these experiments when he formulated his great law of radiation which forms to-day the last word in the science of radiation, a great science which justly bears the mark “made in Germany,” just as the electromagnetic theory bears the mark “made in England.” The Physical-Technical Institute will always stand as a memorial to the man who preached in Germany the doctrine of the closest co-operation between abstract science and the industries. Germany adopted it first; the United States adopted it many years later. Helmholtz and Siemens always represented to me the highest symbol of this co-operation.
Bismarck and Moltke, Helmholtz and Siemens, were the great power which the young German eagle had discovered in his pinions; and he flew as he had never flown before, and his flight astonished me when I was a student in Berlin. He who wants to know the real Germany of the eighties should study the lives of Bismarck and Moltke, of Helmholtz and Siemens. They, I firmly believed at that time, were the leaders of the German constructive thought and action; they were the fathers of united Germany just as Washington and Hamilton, Franklin and Jefferson, were the fathers of this country. But would the spiritual influence of the fathers of united Germany produce a German Lincoln? I knew the historical background of the Declaration of Independence and also its historical foreground too well to answer this question in the affirmative. Extraordinary men can do extraordinary things, but the course of a nation’s destiny will always be guided not by transient efforts of one or even of several extraordinary men of a given period, but by the persistent power of the nation’s traditions.
My visit to Paris was to supply me with more knowledge of the academic world of France, and also with some fresh food for thought relating to my problem in physical chemistry, and it did in a measure. But the current of thought which was started by some of the strongest mental stimuli which I received in Paris had nothing to do with either physical chemistry or with academic France; it ran into German channels which I described above. These were the channels which ran through the minds of most university men in Germany, and in these channels every problem in art, science, and literature was viewed at that time from the standpoint of German economic and political unity. My German scientific friends, particularly those in eastern Prussia, where I spent the summer vacation of 1887, would rather discuss those problems than the problems in physical chemistry or in the electromagnetic theory. It took me some time after my return from Paris to get back completely to my research in physical chemistry. But no sooner had I gone back to it than the irresistible power of the current of big events, following each other in quick succession, took me away from it again. I shall describe them in their historical order, but only in so far as they are related to the main thread of my narrative.
One of the many sources of inspiration at the University of Berlin was the Physical Society which met once a month at the Physical Institute. The research students of the institute were admitted to these meetings, and one can imagine what an inspiration it was to them to see and to hear the scientists like Kirchhoff, the great mathematical physicist, DuBois Reymond, the great physiologist, Hoffman, the great chemist, and Helmholtz, the greatest of them all. I often imagined while attending these meetings and listening to the learned remarks of these scientific giants, that I was a lucky mortal who by some strange accident had found himself suddenly among the great heroes in Walhalla. Helmholtz usually presided, and his impressive physiognomy suggested a Wotan presiding at a gathering of the Teuton gods in Walhalla. Whenever I hear Wagner’s Walhalla motif I am reminded of those memorable scenes in the Physical Institute in Berlin, the scenes of victory of the immortal mind of man over mortal matter.
At one of those meetings, which took place toward the end of 1887, many scientific giants of the university were present and Helmholtz presided. There was an atmosphere of expectancy as if something unusual was going to happen. Helmholtz rose and looked more solemn than ever, but I noticed a light of triumph in his eyes; he looked like a Wotan gazing upon the completed form of heavenly Walhalla, and I felt intuitively that he was about to disclose an unusual announcement, and he did. Referring to Doctor Heinrich Hertz, a former pupil of his and at that time professor of physics at the Technical High School in Karlsruhe, Helmholtz solemnly announced that he would describe some remarkable experimental results which Hertz had obtained by means of very rapid electrical oscillations. He then described in his inimitable way a preliminary report which Hertz had sent him, pointing out, in a most lucid manner, the bearing of these experiments upon the Faraday-Maxwell electromagnetic theory, and affirming that these experiments furnished a complete experimental verification of that remarkable theory. Everybody present was thrilled, particularly when Helmholtz closed with a eulogy of his beloved pupil, Hertz, and with a congratulation to German science upon the good fortune of adding another “beautiful leaf to its laurel wreath.” That thrill soon reached the physicists in every physical laboratory in the world; and for a number of years after that memorable announcement most investigators in physics were busy repeating the beautiful Hertzian experiments. The radio of to-day is an offshoot of those experiments.
This is no place to go into a detailed description of what Hertz did. The fundamental idea underlying his beautiful research and its relation to the Faraday-Maxwell far-reaching electromagnetic theory can be described in very simple terms. The wonderful achievements of radio broadcasting alone, to say nothing of other much more important achievements, demand this description. That idea, like the tiny seed hidden in a beautiful flower, lay hidden in Faraday’s visions and in Maxwell’s wonderful, but, to most ordinary mortals, enigmatic interpretation of them. Hertz, guided by his great teacher, Helmholtz, caught the hidden seed and out of it grew a physical embodiment of the Faraday-Maxwell theory, represented by ideally simple apparatus, operating in an ideally simple way. The apparatus and its operation are now the heart and soul of a new art, the radio art, a beautiful daughter of the beautiful mother, the Faraday-Maxwell electromagnetic science. The following description of Hertz’s apparatus and of its operation was the theme of popular lectures and of many conversations which I had with my friends who were not physicists by profession. It represents quite closely the simple picture which I carried away in my mind from that memorable meeting of the Berlin Physical Society thirty-six years ago.