Speaking for physical sciences I can say that in those days there was no lack of trained scientists who could easily have extended the work of the American college, and added to it a field of advanced work resembling closely the activity of the European universities. Most of these men had received their higher academic training in European universities, and quite a number of them came from Johns Hopkins. But there were two obstacles: first, lack of experimental-research facilities; second, lack of leisure for scientific research. Rowland and his followers recognized the existence of these obstacles, and demanded reform. Most of the energy of the teachers of physical sciences was consumed in the lecture-room; they were pedagogues, “pouring information into passive recipients,” as Barnard described it. My own case was a typical one. How could I do any research as long as I had at my disposal a dynamo, a motor, an alternator, and a few crude measuring instruments only, all intended to be used every day for the instruction of electrical-engineering students? When the professor of engineering died, in the summer of 1891, a part of his work, theory of heat and hydraulics, was assigned to me. The professor of dynamics died a little later, and his work also was transferred to me. I was to carry the additional load of lecture-room work temporarily, but was relieved from it, in part only, after several years. As a reward my title was advanced to adjunct professor, with an advance of salary to two thousand five hundred dollars per annum. But in return for this royal salary I had to lecture three to four hours each forenoon, and help in the electrical laboratory instruction in the afternoons. While this pedagogic load was on my back scientific research could not be seriously thought of. My young colleagues in other colleges were similarly situated. This overloading of young scientists with pedagogic work threatened to stunt, and often did stunt, their growth and also the growth of the rising American university. “Let chairs be founded, sufficiently but not luxuriously endowed, which shall have original research for their main object and ambition,” was the historic warning which Tyndall addressed to the American people in 1873, but in 1893 there was little evidence that it was heeded anywhere outside of Johns Hopkins University. But there they had Rowland and a number of other stars of the first magnitude who had succeeded Joseph Henry, Barnard, and Draper as leaders of the great movement in favor of higher scientific research. In 1883 Rowland delivered a memorable address as vice-president of one of the sections of the American Association for the Advancement of Science. It was entitled, “A Plea for Pure Science,” and described the spirit not only of Johns Hopkins of those days but also of all friends of higher learning in science. That spirit was advocated here by Tyndall in 1872–1873, and under Rowland’s leadership it was bound to win our battle for higher ideals in science. The people of the United States owe a great debt of gratitude to Johns Hopkins for the leadership in that great movement which, as we see to-day, has produced a most remarkable intellectual advancement in this country. Nearly thirty years ago I heard Rowland say in a public address: “They always say in Baltimore that no man in that city should die without leaving something to Johns Hopkins.” When he said it he knew that Johns Hopkins was very poor. It is poorer to-day than ever, and no rich man in the United States should die without leaving something to Johns Hopkins, the pioneer university of the United States.

Rowland said once that lack of experimental facilities and of time was not a valid excuse for neglecting entirely scientific research. I agreed with that opinion; neglect breeds indifference, and indifference degenerates into atrophy of the spirit of inquiry. The alternating current machine of the electrical engineering laboratory at Columbia was free in the evenings, and so was my time; that is, if my wife should not object, and, being a noble and unselfish woman, she did not object. With the assistance of several enthusiastic students, among them Gano Dunn, to-day one of the most distinguished engineers in the United States, I started investigating the passage of electricity through various gases at low pressures, and published two papers in the American Journal of Science. I soon discovered that most of my results had been anticipated by Professor J. J. Thomson, of Cambridge, who, in all probability, had received his inspiration from the same source from which I had received mine. He not only had anticipated me but, moreover, he showed a much better grasp of the subject than I had, and had much better experimental facilities. I decided to leave the field to him, and to watch his beautiful work from the outside. It was a wise decision, because it prepared me to understand the epoch-making discoveries in this field which were soon to be announced, one in Germany and one in France. I turned my attention to another field.

I must mention, however, one of the results which Thomson had not anticipated and which created quite an impression among astronomers. I noticed a peculiar appearance in the electrical discharge proceeding from a small metal sphere which was located in the centre of a large glass sphere containing air at low pressure. The discharges looked very much like the luminous corona of the sun which astronomers observe during eclipses, and which was always a mysterious puzzle in solar physics. Pasting a tin-foil disk on the glass sphere, so as to hide the metal sphere and see only the discharge proceeding from it, I photographed the appearance of the discharge and obtained the pictures given opposite page 294. The resemblance of these photographs to those of the two types of the solar corona is most striking. This is what I said about it at that time:

“The bearing which these experimental results may have upon the theory of the solar corona I prefer to leave to others to decide. That they may prove a suggestive guide in the study of solar phenomena seems not unreasonable to expect.”

ELECTRICAL DISCHARGES REPRESENTING TWO TYPES OF SOLAR CORONÆ

SOLAR CORONA OF 1922

Photographed by the Lick Observatory Expedition to Australia

In a communication read later before the New York Academy of Sciences I was much bolder, having previously discussed the subject with my friends at Johns Hopkins and with the late Professor Young, the famous astronomer at Princeton. I soon found myself advocating strongly the electromagnetic theory of solar phenomena. A German professor, Ebert by name, a well-known authority on electrical discharges in gases, took me very seriously indeed, which was very flattering, but he claimed priority. I had no difficulty in establishing my priority through the columns of Astronomy and Astro-Physics, one of whose editors was George Ellery Hale, to-day the distinguished director of Mount Wilson Observatory. I was indeed fortunate to make his acquaintance during that period when both he and I were very young men. His influence prevented me from running wild with my electromagnetic theory of solar phenomena. Thanks to the splendid astro-physical researches at the Mount Wilson Observatory in California under Doctor Hale’s direction, we know to-day that enormous electrical currents circulate on the surface of the sun, and we know also from other researches that negative electricity is shot out from all hot bodies, even from those not nearly as hot as the sun, and that the solar corona is, in all probability, closely related to this electrical activity on the sun.