For practice it is profitable to commence with the red and orange disks combined on the spindle, with a smaller red disk in front of them, the smallest being preferable. Begin by introducing say five per cent of orange and notice that a change from the standard red at the center is visible. Gradually increase the orange until it seems difficult to say whether the resulting color is more like red or orange, and then exchange the small red disk for an orange disk of the same size, and continue adding orange in the larger disks until the difference cannot be detected between the small disk and the larger combined disks.
The standards may be combined in pairs, as has been indicated with the red and orange, to produce all the intermediate hues throughout the spectrum, but it must be remembered that these combinations are to be made by joining in pairs, colors adjacent in the spectrum, red and orange, orange and yellow, yellow and green, green and blue, blue and violet. We then shall have representations of all the spectrum colors, but there are still the colors between violet and red, known in nature and art as purples, which must be produced by uniting the red and violet disks, thus completing a circuit of colors containing all the pure colors in nature.
In nature all colors are modified by light and shade, strong light producing tints and shadows more or less deep forming shades.
These effects are imitated on the color wheel by the use of a white disk combined with a disk of a standard color for tints and a black disk for shades, and can be tested in the same order as indicated for the hues, by combining each standard disk with a white or a black disk in varying proportions. It will be noticed early in disk experiments that a very small amount of white produces a decided effect in the tone of a color while a comparatively large amount of black is necessary to produce a marked change. As this is exactly the reverse of the effects of white and black pigments it is always a subject of remark. In pigments these effects are imitated by the mixture of white with a color to produce tints, and black for shades, or more generally instead of black some dark natural pigment approaching the hue of the color, may be preferred because a black pigment will too often impart an unexpected and undesirable hue to the color. As for example, in making shades of red some natural brown pigment is better than black, and so various dark browns and grays are used for different colors. Even with the disks it is impossible to imitate purest tints of all the standard colors, because in some of the colors, as peculiarly in red and blue, the rotation of the white disk seems to develop a slightly violet gray, for which effect there has as yet been no scientific explanation. This gray dulls the purity of the tint as compared with that which is found in the color under a bright illumination, but on the whole both tints and shades as well as the hues can be better illustrated with the disks than in any other way, and in addition, the advantage is secured of being able to measure and record the tone by the graduated disk in the same way as the hues are measured and recorded. A further advantage is secured in the use of disks in color instruction because with pigments, the only other method by which colors can be combined, much time must be lost not only in the mixing and applying of the colors but in the delay necessary to allow them to dry before the true results can be seen.
Fig. 8.
The shades of yellow as shown on the wheel will not be generally accepted without criticism, but careful comparison with yellow paper in shadow will prove the substantial truth of the disk results. This experiment may be tried as follows: Join two cards with a hinge of paper or cloth to form a folding screen like the covers of a book as in Fig. 8. On the surface A, paste a piece of standard yellow paper and on B, a piece of yellow shade No. 1. Hold these two surfaces toward the class in such a position that the strong light will fall on B, which is the yellow shade, and thus bring the face A, which is a standard yellow, in a position to be shaded from the light. By varying the angle of the covers with each other and turning them as a whole from side to side, a position will be secured in which the two faces will seem so nearly alike as to convince the class that this color which they may have thought to be green, is not green, but a color peculiar to itself, a shade of yellow; because the darker paper when in full light appears substantially the same as the standard yellow in the shade or shadow.
In our experiments thus far with the wheel we have combined the standards in pairs to produce the colors of the spectrum between the standards, which for convenience may be called intermediate spectrum hues, and also have combined a white disk with each of the standards to produce tints of the standards and a black disk to make shades.
By combining a white disk with an orange and a yellow disk, for example, forming a trio of disks, a variety of tints of orange yellow and yellow orange may be made. Also by the use of the black disk instead of the white a series of shades of the intermediate hues may be produced, and thus a great variety of tints and shades of many spectrum colors shown.
Now if the white and black disks are combined with each other the result will be a shade of white, i.e., a white in shadow, which is an absolutely neutral gray. As the experiments progress it will be seen that this neutral gray is a very important feature in the study of color, and therefore it may be well at this point to make sure that the disk combinations give the true gray of a white in shadow by a test similar to the one used for the shade of yellow, thus disarming criticism. Such a test may conveniently be made by covering the reverse sides of the folding covers with white on one cover and "neutral gray paper No. 1" on the other. As the neutral gray papers are made in imitation of combinations of black and white disks this experiment is as convincing as the one regarding the yellow shade. This is but one of many examples of the value of disk combinations in the classification and analysis of colors.