Then introduce a small amount of orange, perhaps not enough to cause the effect to be perceived by the children when the wheel is in motion, and rotate. Ask if they see any difference between the small disk at the center and the larger surface. Add more orange till they see a difference, and continue to add orange to the red until nearly one-half the disk is orange or till it may be questionable whether the color made by rotation is more nearly orange or red. This point will be reached before the orange nearly equals the red, because the orange is more luminous. Explain that all these colors which the children have been seeing are orange-reds and ask the pupils to select that color from their papers which is orange-red, or most like the orange and red. In the meantime set the orange and red disks to the proportion of R. 85, O. 15, which nearly or exactly matches the orange-red paper. When the children have selected the paper which they think is orange-red, put the wheel in motion and ask them if their selection is like the color on the wheel. If not, see that all understand and have selected the orange-red paper to place next the red sample. When this has been done remove the disks from the wheel and readjust the larger ones so as to show a combination that is nearly all orange; then replace them and substitute in front a small orange disk instead of the red one and proceed to show a series of red-orange colors from the orange toward the red, as previously shown from the red toward the orange.

With experiments before adults this break in the order of proceeding and the change of disks would be unnecessary, but with children it is desirable to mark a distinction between the orange-red and the red-orange colors, a fact which is emphasized by the mechanical manipulation. When the children have been asked to place their red-orange paper in its proper position the disks may be set to R. 50, O. 50, and an imitation of their red-orange paper shown.

If the school is provided with color tops their use may be begun at this point by allowing the children to attempt to repeat the wheel experiments with the tops and thus produce for themselves an imitation of the two intermediate spectrum hues in the papers. In all combinations of colors by disks as well as pigments there is some loss of purity and hence the colors of papers in the intermediate hues may be a little brighter in some cases than the results of two disks in combination.

This suggestion for the presentation of one pair of the intermediate spectrum hues may serve to illustrate all the others, and the time which can be devoted to the whole subject must determine the detail with which each pair is treated.

If the tops are provided in a school but no color wheel then the teacher must begin with a top as a substitute for the wheel and let the children follow her with their tops by dictation. At first this will be much more difficult than if the wheel could be used, but after the children have become somewhat familiar with the handling of the top by dictation the result will be quite surprising. There will be in every school some children who are exceedingly awkward in the manipulation of the top, until the happy day arrives when all school children are graduates of kindergartens. At present the average kindergarten pupil will handle the top better than the children in the lowest primary grades who have not had the advantages of kindergarten instruction.

When all the hues except the red-violet and violet-red have been located, the teacher should be prepared with a chart made by pasting the eighteen paper samples, including standards and intermediate hues, in their order on a strip of paper, so that by bringing the ends together the children may see that when they place the violet-red at one end of their row and the red-violet at the other they are really completing a spectrum circuit and forming a chart of natural colors. Ever since Newton's day it has been fashionable to speak of the spectrum as nature's chart of colors. This expression is but partially true and is entirely false if we mean that it contains examples of all the colors in nature. The spectrum is valuable in color study only from the fact that it enables us to establish permanent standard colors from which all colors in nature and the arts may be named and by the combinations of which such colors may be imitated.

Unless the standard colors in a system of color instruction are the closest possible imitations of corresponding spectrum colors there is no logical relation between such a system and a chart of colors based on the spectrum, because the spectrum does not furnish a complete circuit of colors and its only value is, as before stated, in furnishing a permanent standard on which to found a nomenclature of colors.

Up to this time we have not suggested the practice of introducing any natural objects or calling the attention of the children to various colors found in their surroundings. Each teacher must use her judgment regarding this matter, but as soon as miscellaneous colors are to be considered the two questions of hues and tones are necessarily involved, and experienced teachers have been divided in their opinions as to which should be first considered, tone or hue. When it was thought necessary to occupy a long time in presenting all the spectrum colors this question assumed greater importance than at present, but very many teachers have become convinced that we have not been giving the children credit for nearly as much ability in the recognition of colors as they deserve, and that with the methods at present in use the six standard colors and twelve hues can be learned in a few weeks, during which time it may not be necessary to discuss the complicated combinations of colors in nature and our domestic surroundings. This is not intended to mean that the child will in this time be able to name the various hues when seen separately, but that having the eighteen paper tablets he may feel their relations to each other to such an extent as to be able to lay them in their spectrum order. Those pupils who seem to have no natural perception of the proper relationship of colors will require more experience than the rest of the class before they can be sure of their colors and the teacher must exercise her judgment in deciding how long to hold the class to this subject of spectrum hues on their account.

As in other class work it is not necessary that the dull children perfectly comprehend all that is told them at each step, because there will always be some in a class who will comprehend and thus the others may learn by observation, and in this subject particularly every step in advance must necessarily include a continual review of all that has preceded.

Consequently when a teacher has given as much time to the study of hues in the arrangement of the papers as she deems profitable, considering the entire time that can be devoted to the subject during the year, she may well proceed to tones.